High Performance – Question 10

Student Bounty.com 10. An engineer models the rates of the production of an alloy in the first 10 weeks by two new machines respectively by

$$\frac{dx}{dt} = \frac{61t}{(t+1)^{\frac{5}{2}}} \text{ and } \frac{dy}{dt} = \frac{15\ln(t^2 + 100)}{16} \text{ for } 0 \le t \le 10,$$

where x (in million kg) and y (in million kg) are the amount of the alloy produced by machines A and Brespectively, and t (in weeks) is the time elapsed since the beginning of the production.

- Using the substitution u = t + 1, find the amount of the alloy produced by machine A in the first 10 weeks.
- (b) Using the trapezoidal rule with 5 sub-intervals, estimate the amount of the alloy produced by machine B in the first 10 weeks. (2 marks)
- The engineer uses the results of (a) and (b) to claim that machine B is more productive than machine A in the first 10 weeks. Do you agree? Explain your answer.

10 (a) Amount = 50 (+1) 5/2 dt	IA
= (1 61(u-1) du (: u=++	()
= ("61(u-3- 1-3) du/	
$\frac{7.61}{1-\frac{1}{2}} + \frac{\sqrt{\frac{2}{2}}}{\frac{2}{2}} \right]^{1/2}$	IA
- 45.6636	1A
(b) Amount by B = (15 (n(+2+100) d+ = 2 x 15 [[n(0+100) +2]n(2+100)+2] = 2 x 15 [[n(0+100) +2]n(2+100)+2] = 45.6792	<u>IA</u>
(C) $\frac{d}{dt} \left(\frac{dy}{dt} \right) = \frac{d}{dt} \frac{lb \left[n \left(\frac{1}{t} + 1 \right) \infty \right)}{lb \left(\frac{1}{t} + 1 \right)}$ $= \frac{lb \left(\frac{1}{t} + 1 \right)}{lb \left(\frac{1}{t} + 1 \right)}$	SA PA
$= \frac{16(+^{2}+100)}{8(+^{2}+100)}$	N Will B
$\frac{d^{2}}{dt^{2}}\left(\frac{dy}{dt}\right) = \frac{15}{8}\left[\frac{+^{2}+100-+(1+)}{(+^{2}+100)^{2}}\right] = \frac{17}{8}\left(\frac{100-t^{2}}{(t^{2}+100)^{2}}\right)$	the margin
For $0 < + < 10^{-1}$, $\frac{d^2}{dt^2} \left(\frac{dy}{dt} \right) > 0$	s written in
:- The amount produced by B is a under-es :- B is more productive than A	tim stex

High Performance – Question 13

- 13. In a supermarket, there are two cashier counters: a regular counter and an express counter. It is known customers pay at the regular counter. It is found that the waiting time for a customer to pay at the regular follows the normal distribution with mean 6.6 minutes and standard deviation 1.2 minutes.
 - Find the probability that the waiting time for a customer to pay at the regular counter is more than 6 minute
- Student Bounts, com Suppose 12 customers who pay at the regular counter are randomly selected. Assume that their waiting times are independent.
 - Find the probability that there are more than 10 of the 12 customers each having a waiting time of more than 6 minutes.
 - (ii) Find the probability that the average waiting time of the 12 customers is more than 6 minutes.

(5 marks)

- (c) It is found that the waiting time for a customer to pay at the express counter follows the normal distribution with mean μ minutes and standard deviation 0.8 minutes. It is known that exactly 21.19% of the customers at the regular counter wait less than k minutes, while exactly 3.59% of the customers at the express counter wait more than k minutes.
 - Find k and μ .
 - (ii) Two customers are randomly selected. Assume that their waiting times are independent. Given that both of them wait more than μ minutes to pay, find the probability that exactly one of them pays at the regular counter.

(8 marks)

	7
13 a) /~ N(6.6,1.2)	
P(X>6) = P(2>6-6.6) IM	
= 0.5 × 0.1915	
2 0.6 915 / IA	
b)(1) Y~B(0.6915,12)	
P(Y>10) = C12(0.6918)"(1-0.6915)+C12(0.6915)12/14	IM
= 20.0759 / IA	' '
(Ti) X~N(6.6,0.12)	8
$P(X > 6) = P(Z > \frac{6 - 66}{5 - 66})$	mark
= 0.5+0.4584	not be
= 0.9584 / (A	Answers written in the margins will not be marked
	argins
c) (7) D(X <k) 0.2119="" 0.82)<="" =="" td="" wn(m,=""><td>the m</td></k)>	the m
P(Z(K-6.6)=0.2119 /IMP(W>5.64)=0.0359	in in
$\frac{k-66}{12} = -0.8$ $P(Z > \frac{5.64-1}{0.0}) = 0.0359$. <u>[</u>][M
K = 5.64 / IA 5.64-M = 1.8	nswer
n=42/	\ IA
(i) P(X>4.2) P(W>4.2)	
= P(Z > 4.2-6.6) = 0.5 (: mean value = 4.2)	
= 0.5 +0.4772	
=0.9772 / 1A	
The required prob	
$= C_1^2(0.8)(0.12)$	
[0.97]2)(0.5)	
= 0.43×3 ×	
	1

Mid Performance – Question 6

- Student Bounty.com A random sample of size 10 is drawn from a normal population with mean μ and variance 8. Let 6. mean of the sample.
 - (a) Calculate $Var(2\overline{X} + 7)$.
 - (b) Suppose the mean of the sample is 50. Construct a 97% confidence interval for μ .

6 a) $\bar{X} \sim N(\mu, \sqrt{\frac{g}{10}}^2)$	
Var (2X+7)	
$= 2^2 \text{Var}(\overline{X})$	
$=4\left(\frac{9}{6}\right)$	IM
= 3.2	IA
11 11 97 9 1:1.	- / - / - · · · · · · · · · · · · · · ·

表現中等 — 第八題

- Student Bounty.com 某農場把其出產的雞蛋裝入箱子中,每個箱子盛有30隻雞蛋。一隻隨機選取的雞蛋是 的概率為 0.04。
 - (a) 求某個箱子盛有超過 1 隻變壞雞蛋的概率。
 - (b) 現逐一檢查雞蛋箱子。
 - (i) 求第 6 個被檢查的箱子為第 1 個發現盛有超過 1 隻變壞雞蛋的箱子的概率。
 - (ii) 求在首次發現盛有超過 1 隻變壞雞蛋的箱子時所曾檢查過的箱子數目的期望值。

(7分)

8(a) 所本概算 30 30	
= 1 - C30 (1-0.04) - C, (0.04) (1-0.04) /M+IM
= 0.338820	
- 238f	VIA
(b)(7) P=(1-0.338820) (0.3	38820) / IM
~ 0.0428121	
= 0.0428	V IA
(河) 其科学值 = 5.0428	
= 23.361图	X

表現稍遜 — 第一題

- 1. (a) 展開 $(2x+1)^3$ 。
 - (b) 依 x 的升幂次序展開 e^{-ax} 到含 x^2 的項爲止,其中 a 爲常數。
 - (c) 若在 $\frac{(2x+1)^3}{e^{ax}}$ 的展式中, x^2 項的係數是 -4,求 a 的値。

Student Bounts, com

1 (a) $(2\chi+1)^3 = (2\chi)^3 + 3(2\chi)^2 + 3(2\chi) + 1$ $= 8\chi^3 + 12\chi^2 + 6\chi + 1$ (b) $e^{-a\chi} = 1 - a\chi + \frac{a}{2}\chi^2 + \cdots$ (c) $(2\chi+1)^3 = 8\chi^3 + 12\chi^2 + 6\chi + 1$ $= \frac{a^2\chi}{1 + a\chi} + \frac{a^2\chi}{2}\chi^2 + \cdots$ $= \frac{1 + a\chi + \frac{a^2\chi}{2}\chi^2 + \cdots}{1 + a\chi + \frac{a^2\chi}{2}\chi^2 + \cdots}$

(5分)

表現稍遜 — 第五題

- 5. 考慮曲線 $C_1: y=1-\frac{e}{e^x}$ 及曲線 $C_2: y=e^x-e$ 。
 - (a) 求 C_1 及 C_2 所有交點的 x 坐標。
 - (b) 求 C_1 及 C_2 所圍成區域的面積。

SALECRARBOLINA, COMM (5分)

$5 \text{ a)} 1 - \frac{e}{e^{x}} = e^{x} - e$			
$-e = e^{2x} - e^{x} \cdot e - e^{2}$			
e2x - (e+1)ex + e = 0	ΙA		
$(e^{x} - e)(e^{x} - 1) = 0$			
e×=e 或 1	-		v
x = 1 ± 0 √	IA		
b) $\int_{0}^{1} (e^{x} - e) - (1 - \frac{e}{e^{x}}) dx$	IM	PP-1	
$= \int_{0}^{1} \frac{e^{x}-e-1+e}{e^{x}} dx$ $= \int_{0}^{1} \frac{e^{x}-1}{e^{x}} dx$		Harris Harris Company	
$=\int_{0}^{1} \frac{e^{x}-1}{e^{x}} dx$,		
$=\int_{0}^{1}1-e^{-x} dx$			
$= [x + e^{-x}]$		and the second s	
= 1.3679 X	OΑ		