香港考試及評核 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

FOR TEACHERS' USE ONL CORPUS OF THORITY 香港中學文憑考 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

> 練習卷 PRACTICE PAPER

數學 延伸部分 單元二(代數與微積分)

MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

評卷參考

MARKING SCHEME

本評卷參考乃香港考試及評核局專爲本科練習卷而編寫,供教師和學生參考之用。學 生不應將評卷參考視爲標準答案,硬背死記,活剝生吞。這種學習態度,既無助學生 改善學習,學懂應對及解難,亦有違考試着重理解能力與運用技巧之旨。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' and students' reference. This marking scheme should NOT be regarded as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

DD DOD 14 (DIT DD 0.46)

www.StudentBounty.com Homework Help & Pastpapers

General Notes for Teachers on Marking

Adherence to marking scheme

- FOR TEACHERS' USE ONL

 Marking

 Performance prolying This marking scheme has been updated, with revisions made after the scrutiny of actual samples of student performan practice papers. Teachers are strongly advised to conduct their own internal standardisation procedures before applying marking schemes. After standardisation, teachers should adhere to the marking scheme to ensure a uniform standard of mark within the school.
- It is very important that all teachers should adhere as closely as possible to the marking scheme. In many cases, however, students may have arrived at a correct answer by an alternative method not specified in the marking scheme. In general, a correct alternative solution merits all the marks allocated to that part, unless a particular method has been specified in the question. Teachers should be patient in marking alternative solutions not specified in the marking scheme.

Acceptance of alternative answers

- For the convenience of teachers, the marking scheme was written as detailed as possible. However, it is likely that students would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, teachers should exercise their discretion in marking students' work. In general, marks for a certain step should be awarded if students' solution indicate that the relevant concept / technique has been used.
- In marking students' work, the benefit of doubt should be given in students' favour. 4.
- 5. Unless the form of the answer is specified in the question, alternative simplified forms of answers different from those in the marking scheme should be accepted if they are correct.
- Unless otherwise specified in the question, use of notations different from those in the marking scheme should not be penalised.

Defining symbols used in the marking scheme

In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for applying correct methods 'A' marks awarded for the accuracy of the answers

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving at an answer given in the question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. (I.e. Teachers should follow through students' work in awarding 'M' marks.) However, 'A' marks for the corresponding answers should NOT be awarded, unless otherwise specified.

In the marking scheme, steps which can be skipped are enclosed by dotted rectangles, whereas alternative answers are enclosed by solid rectangles .

Others

- Marks may be deducted for poor presentation (pp), including wrong / no unit. Note the following points:
 - (a) At most deduct 1 mark for pp in each section.
 - (b) In any case, do not deduct any marks for pp in those steps where students could not score any marks.
- 10. (a) Unless otherwise specified in the question, numerical answers not given in exact values should not be accepted.
 - In case a certain degree of accuracy had been specified in the question, answers not accurate up to that degree should not be (b) accepted. For answers with an excess degree of accuracy, deduct 1 mark for pp. In any case, do not deduct any marks for excess degree of accuracy in those steps where candidates could not score any marks.

FOR TEACHERS' USE ONL

	只限教師参阅 FOR TEACHERS	USE OF	VIEW YES
	Solution	Marks	7/6
1.	The general term of $(2-x)^9$ is $C_r^9 2^{9-r} (-x)^r$	1M	0
	$=C_r^9 2^{9-r} (-1)^r x^r$	1A	174
	Alternative Solution $(2-x)^9 = 2^9 - C_1^9 2^8 x + C_2^9 2^7 x^2 - C_3^9 2^6 x^3 + C_4^9 2^5 x^4 - C_5^9 2^4 x^5 + \cdots$	1M+1A	JENHOUNTS, CO.
	Hence the coefficient of x^5 is $-C_5^9 2^4$ = -2016	1M 1A	`
		(4)	
2.	If the system of homogeneous equations has non-trivial solutions, then		
	$\begin{vmatrix} 1 & -7 & 7 \\ 1 & -k & 3 \\ 2 & 1 & k \end{vmatrix} = 0$	1M+1A	
	$-k^{2} + 7 - 42 + 14k + 7k - 3 = 0$ $k^{2} - 21k + 38 = 0$	1M	
	k = 19 or 2	1A	
		(4)	
3.	For $n=1$, $4^{1}+15(1)-1=18$ which is divisible by 9. \therefore the statement is true for $n=1$.	1	
	Assume $4^k + 15k - 1$ is divisible by 9, where k is a positive integer. i.e. let $4^k + 15k - 1 = 9N$, where N is an integer. $4^k = 9N - 15k + 1$	1	Withdraw the last mark if "N is an integer" was omitted
	$4^{k+1} + 15(k+1) - 1$ = 4(9N - 15k + 1) + 15k + 15 - 1 (by induction assumption)	1	
	= 36N - 45k + 18 = 9(4N - 5k + 2) which is divisible by 9	1	
	Hence the statement is true for $n = k + 1$. By the principle of mathematical induction, the statement is true for all positive integers n .	1	Follow through
		(5)	
4.	(a) $\frac{2x}{1+x^2} = \frac{2\tan\theta}{1+\tan^2\theta}$ $= \frac{2\tan\theta}{\sec^2\theta}$ $\sin\theta$	1M	
	$= 2 \frac{\sin \theta}{\cos \theta} \cdot \cos^2 \theta$ $= \sin 2\theta$	1	
	(b) $\frac{(1+x)^2}{1+x^2} = \frac{1+x^2+2x}{1+x^2}$ $= 1 + \frac{2x}{1+x^2}$ Since x is real, we can let $x = \tan \theta$, for some θ	1M	
	Since x is real, we can let $x = \tan \theta$ for some θ . $\therefore \frac{(1+x)^2}{1+x^2} = 1 + \sin 2\theta \text{by (a)}$	1M	

DD DGE 1717911 ED 276

FOR TEACHERS' USE ON

		只限教師參閱 FOR TEACHERS'	USE ON	1 56 T
		Solution	Marks	36
		Since the maximum value of $\sin 2\theta$ is 1, the maximum value of $\frac{(1+x)^2}{1+x^2}$ is 2.	1A	OR $\cos x \cos 1 - \sin x$
			(5)	2
5.	(a)	$\cos(x+1) + \cos(x-1) = 2\cos\frac{x+1+x-1}{2}\cos\frac{x+1-x+1}{2}$	1M	OR $\cos x \cos 1 - \sin x \sin x + \cos x \cos 1 + \sin x \sin x$
		$=2\cos 1\cos x$		`
		Alternative Solution $\cos(0+1) + \cos(0-1) = k \cos 0$	1M	
		i.e. $k = 2\cos 1$	1A	
	(b)	$\begin{vmatrix} \cos 1 & \cos 2 & \cos 3 \\ \cos 4 & \cos 5 & \cos 6 \\ \cos 7 & \cos 8 & \cos 9 \end{vmatrix} = \begin{vmatrix} \cos 1 + \cos 3 & \cos 2 & \cos 3 \\ \cos 4 + \cos 6 & \cos 5 & \cos 6 \\ \cos 7 + \cos 9 & \cos 8 & \cos 9 \end{vmatrix}$	1M	For column (or row) operations
		$= \begin{vmatrix} 2\cos 1\cos 2 & \cos 2 & \cos 3 \\ 2\cos 1\cos 5 & \cos 5 & \cos 6 \\ 2\cos 1\cos 8 & \cos 8 & \cos 9 \end{vmatrix} $ by (a)	1M	For using (a) or sum-to- product formula of cosine
		$= 2\cos 1 \begin{vmatrix} \cos 2 & \cos 2 & \cos 3 \\ \cos 5 & \cos 5 & \cos 6 \\ \cos 8 & \cos 8 & \cos 9 \end{vmatrix}$	1M	
		$\begin{vmatrix} \cos 8 & \cos 8 & \cos 9 \end{vmatrix}$ = 0	1A	
			(6)	
		1 1		
6.	$\frac{\mathrm{d}}{\mathrm{d}x}$	$\left(\frac{1}{x}\right) = \lim_{h \to 0} \frac{\frac{1}{x+h} - \frac{1}{x}}{h}$	1M+1A	
		$= \lim_{h \to 0} \frac{x - x - h}{h(x + h)x}$		
		$=\lim_{h\to 0}\frac{-1}{(x+h)x}$	1A	
		$=\frac{-1}{x^2}$	1A	
		*	(4)	
7.	(a)	$f(x) = e^x (\sin x + \cos x)$		
	()	$f'(x) = e^x(\sin x + \cos x) + e^x(\cos x - \sin x)$		
		$=2e^x\cos x$	1A	
		$f''(x) = 2e^x \cos x - 2e^x \sin x$		
		$=2e^x(\cos x-\sin x)$	1A	
	(b)	f''(x) - f'(x) + f(x) = 0		
		$2e^{x}(\cos x - \sin x) - 2e^{x}\cos x + e^{x}(\sin x + \cos x) = 0$	1M	
		$e^x(\cos x - \sin x) = 0$		
		$\sin x = \cos x$ or $e^x = 0$ (rejected) $\tan x = 1$	1A	
		$x = \frac{\pi}{4} \text{for} 0 \le x \le \pi$	1A	
			(5)	· -

FOR TEACHERS' USE ONL

	六败叙即参阅	FOR TEACHERS	USE OI	The second
	Solution		Marks	170
8.	(a) Let $x = 2\sin\theta$.		1M	OR $x = 0$
	$dx = 2\cos\theta d\theta$			Mr.
	$\int \frac{\mathrm{d}x}{\sqrt{4-x^2}} = \int \frac{2\cos\theta}{\sqrt{4-4\sin^2\theta}} \mathrm{d}\theta$			OR x=
	$\int \sqrt{4-x^2} \int \sqrt{4-4\sin^2\theta}$			6
	$=\int 1\mathrm{d}\theta$		1A	
	$=\theta+C$			`
	$=\sin^{-1}\frac{x}{2}+C$		1A	
	2 1 2		171	
	(b) $\int \ln x dx = x \ln x - \int x d \ln x$		1M	
	$= x \ln x - \int x \cdot \frac{1}{x} dx$			
	$ \begin{array}{ll} \mathbf{J} & \mathbf{x} \\ = x \ln x - x + C \end{array} $		1A	
	$-\lambda \prod \lambda - \lambda + C$		IA.	
			(5)	
9.	$x^2 - xy - 2y^2 - 1 = 0$	(*)		
	$2x - x\frac{dy}{dx} - y - 4y\frac{dy}{dx} = 0$		1A	
	di di			
	For the tangents parallel to $y = 2x + 1$, $\frac{dy}{dx} = 2$.			
	$\therefore 2x - x(2) - y - 4y(2) = 0$		1M	
	y = 0		1A	
	By (*), $x^2 - 1 = 0$		1M	
	$x = \pm 1$			
	Hence the tangents are $y-0=2[x-(\pm 1)]$		1M	P 1 4
	i.e. $y = 2x + 2$ and $y = 2x - 2$		1A	For both
			(6)	
10.	(a) $\int xe^{-x^2} dx = \int e^{-x^2} \frac{1}{2} dx^2$		1M	OR $\int e^{-x^2} \frac{-1}{-1} d(-x^2)$
	• £			OR $\int e^{-x^2} \frac{-1}{2} d(-x^2)$
	$=\frac{-1}{2}e^{-x^2}+C$		1A	
	2			
	(b) The volume of the solid			
	$=2\pi \int_{1}^{2} x \left(\frac{x^{2}}{2} - e^{-x^{2}} \right) dx$		1M+1A	$1M \text{ for } V = 2\pi \int xy \mathrm{d}x$
	/			J *
	$=2\pi \int_{1}^{2} \left(\frac{x^{3}}{2} - xe^{-x^{2}}\right) dx$			
	$J_1 \left(\begin{array}{ccc} 2 & & \end{array} \right)^{a}$			
	$\begin{bmatrix} x^4 & 1 & -x^2 \end{bmatrix}^2$		13.6	To a star (A)
	$=2\pi \left[\frac{x^4}{8} + \frac{1}{2}e^{-x^2}\right]_1^2$		1M	For using (a)
	$= \left(\frac{15}{4} + e^{-4} - e^{-1}\right)\pi$		1A	
	•		(6)	

口限数師參問

只限教師參閱 FOR TEACHE	RS' USE ON	A GE
Solution $(\alpha + \beta - \alpha \beta)(\alpha + \beta - \alpha \beta)$	Marks	18
$A^{2} = \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix}$		
$= \begin{pmatrix} (\alpha + \beta)^2 - \alpha\beta & -\alpha\beta(\alpha + \beta) \\ \alpha + \beta & -\alpha\beta \end{pmatrix}$	1A ←	Either one
$(\alpha + \beta)A - \alpha\beta I = (\alpha + \beta) \begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} - \alpha\beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$		 Either one
$= \begin{pmatrix} (\alpha + \beta)^2 - \alpha\beta & -\alpha\beta(\alpha + \beta) \\ \alpha + \beta & -\alpha\beta \end{pmatrix}$	<	
i.e. $A^2 = (\alpha + \beta)A - \alpha\beta I$	1	
	(2)	
$(A - \alpha I)^2 = A^2 - 2\alpha A + \alpha^2 I$		
$= (\alpha + \beta)A - \alpha\beta I - 2\alpha A + \alpha^2 I \text{by (a)}$	1M	
$= (\beta - \alpha)A + (\alpha^2 - \alpha\beta)I$ = $(\beta - \alpha)(A - \alpha I)$	1	
Alternative Solution		
$(A - \alpha I)^2 = \left(\begin{pmatrix} \alpha + \beta & -\alpha \beta \\ 1 & 0 \end{pmatrix} - \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)^2$		
$= \begin{pmatrix} \beta & -\alpha\beta \\ 1 & -\alpha \end{pmatrix} \begin{pmatrix} \beta & -\alpha\beta \\ 1 & -\alpha \end{pmatrix}$		
$= \begin{pmatrix} \beta^2 - \alpha\beta & \alpha^2\beta - \alpha\beta^2 \\ \beta - \alpha & \alpha^2 - \alpha\beta \end{pmatrix}$	1A	
$(\beta - \alpha)(A - \alpha I) = (\beta - \alpha) \left(\begin{pmatrix} \alpha + \beta & -\alpha \beta \\ 1 & 0 \end{pmatrix} - \alpha \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$		
$= (\beta - \alpha) \begin{pmatrix} \beta & -\alpha\beta \\ 1 & -\alpha \end{pmatrix}$		
$= \begin{pmatrix} \beta^2 - \alpha \beta & \alpha^2 \beta - \alpha \beta^2 \\ \beta - \alpha & \alpha^2 - \alpha \beta \end{pmatrix}$		
i.e. $(A - \alpha I)^2 = (\beta - \alpha)(A - \alpha I)$	1	
By interchanging α and β , we have $(A - \beta I)^2 = (\alpha - \beta)(A - \beta I)$.	1	
Alternative Solution 1 $(A - \beta I)^2 = A^2 - 2\beta A + \beta^2 I$		
$= (\alpha + \beta)A - \alpha\beta I - 2\beta A + \beta^2 I \text{by (a)}$		
$=(\alpha-\beta)A+(\beta^2-\alpha\beta)I$		

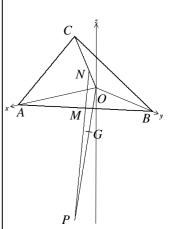
	1	5
只限教師參閱 FOR TEACHERS'	USE ON	A Tage
Solution	Marks	178
Alternative Solution 2 $(A - \beta I)^2 = \left(\begin{pmatrix} \alpha + \beta & -\alpha \beta \\ 1 & 0 \end{pmatrix} - \beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)^2$		SHILDEN BOUNTS COM
$= \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix} \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$		COM
$= \begin{pmatrix} \alpha^2 - \alpha\beta & \alpha\beta^2 - \alpha^2\beta \\ \alpha - \beta & \beta^2 - \alpha\beta \end{pmatrix}$		
$(\alpha - \beta)(A - \beta I) = (\alpha - \beta) \left(\begin{pmatrix} \alpha + \beta & -\alpha \beta \\ 1 & 0 \end{pmatrix} - \beta \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right)$		L
$= (\alpha - \beta) \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$		
$= \begin{pmatrix} \alpha^2 - \alpha\beta & \alpha\beta^2 - \alpha^2\beta \\ \alpha - \beta & \beta^2 - \alpha\beta \end{pmatrix}$ i.e. $(A - \beta I)^2 = (\alpha - \beta)(A - \beta I)$	1	
i.e. $(A-\mu)^{\prime} - (\mu-\mu)(A-\mu)^{\prime}$	(3)	
(c) (i) $A = X + Y$ $\begin{pmatrix} \alpha + \beta & -\alpha\beta \\ 1 & 0 \end{pmatrix} = s \begin{pmatrix} \beta & -\alpha\beta \\ 1 & -\alpha \end{pmatrix} + t \begin{pmatrix} \alpha & -\alpha\beta \\ 1 & -\beta \end{pmatrix}$		
$= \begin{pmatrix} s\beta + t\alpha & -\alpha\beta(s+t) \\ s+t & -s\alpha - t\beta \end{pmatrix}$ $\left(s\beta + t\alpha = \alpha + \beta\right)$	1M	
Comparing the entries, we have $\begin{cases} s+t=1\\ s\alpha+t\beta=0 \end{cases}$		
Solving, $s = \frac{\beta}{\beta - \alpha}$ and $t = \frac{\alpha}{\alpha - \beta}$	1A	For both
(ii) Consider the statement " $X^n = \frac{\beta^n}{\beta - \alpha} (A - \alpha I)$ and $Y^n = \frac{\alpha^n}{\alpha - \beta} (A - \beta I)$ ". When $n = 1$, $X = \frac{\beta}{\beta - \alpha} (A - \alpha I)$ and $Y = \frac{\alpha}{\alpha - \beta} (A - \beta I)$ are true by (c)(i).	1	
Assume $X^k = \frac{\beta^k}{\beta - \alpha} (A - \alpha I)$ and $Y^k = \frac{\alpha^k}{\alpha - \beta} (A - \beta I)$, where k is a		
positive integer. $X^{k+1} = \frac{\beta^k}{\beta - \alpha} (A - \alpha I) \frac{\beta}{\beta - \alpha} (A - \alpha I) \text{by the assumption}$		
$= \frac{\beta^{k+1}}{(\beta - \alpha)^2} (\beta - \alpha)(A - \alpha I) \text{by (b)}$	1 <	
$=\frac{\beta^{k+1}}{\beta-\alpha}(A-\alpha I)$		Either one
$Y^{k+1} = \frac{\alpha^k}{\alpha - \beta} (A - \beta I) \frac{\alpha}{\alpha - \beta} (A - \beta I) \text{by the assumption}$ $= \frac{\alpha^{k+1}}{(\alpha - \beta)^2} (\alpha - \beta) (A - \beta I) \text{by (b)}$	_	
$= \frac{\alpha^{k+1}}{(\alpha - \beta)^2} (\alpha - \beta)(A - \beta I) \text{by (b)}$ $= \frac{\alpha^{k+1}}{\alpha - \beta} (A - \beta I)$	1	
$\alpha - \beta$	•	l

FOR TEACHERS' USE ONL

		六阪 教師参阅 FURICAUNG	IKO U	SE OI	AL ACT
		Solution		Marks	30
		Hence the statement is true for $n = k + 1$. By the principle of mathematical induction, the statement is true for a positive integers n .	all	1	Follow through
((iii)	$XY = s(A - \alpha I)t(A - \beta I)$			1.0
		$= st[A^2 - (\alpha + \beta)A + \alpha\beta I] \text{by (a)}$			`
		$=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$		<	
		$YX = t(A - \beta I)s(A - \alpha I)$			
		= $st[A^2 - (\alpha + \beta)A + \alpha\beta I]$ by (a)			For both
		$=\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$		1 <	
		$A^n = (X + Y)^n$			
		$= X^n + Y^n$ by the note given		1M	
		$= \frac{\beta^n}{\beta - \alpha} (A - \alpha I) + \frac{\alpha^n}{\alpha - \beta} (A - \beta I) \text{by (ii)}$			
		$=\frac{\alpha^n-\beta^n}{\alpha-\beta}A+\frac{\alpha\beta^n-\alpha^n\beta}{\alpha-\beta}I$		1A	
		$\alpha - \beta$ $\alpha - \beta$		(9)	
				(2)	
12. (a) ((i)	$\overrightarrow{OM} = (1-a)\mathbf{i} + a\mathbf{j}$		1A	
		$\overrightarrow{ON} = b(\mathbf{i} + \mathbf{j} + \mathbf{k})$			
		$\therefore \overrightarrow{MN} = b(\mathbf{i} + \mathbf{j} + \mathbf{k}) - [(1 - a)\mathbf{i} + a\mathbf{j}]$			
		$= (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}$		1	
((ii)	$\overrightarrow{AB} = \mathbf{j} - \mathbf{i}$			
		$\overrightarrow{MN} \cdot \overrightarrow{AB} = 0$			
		$[(a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}] \cdot (\mathbf{j} - \mathbf{i}) = 0$		1M	
		-a-b+1+b-a=0			
		$a = \frac{1}{2}$		1A	
		$\overrightarrow{MN} \cdot \overrightarrow{OC} = 0$			
		$[(a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}] \cdot (\mathbf{i} + \mathbf{j} + \mathbf{k}) = 0$		1M	
		a+b-1+b-a+b=0			
		$b = \frac{1}{3}$		1A	
	Γ	Alternative Solution			
		$\overrightarrow{AB} \times \overrightarrow{OC} = (-\mathbf{i} + \mathbf{j}) \times (\mathbf{i} + \mathbf{j} + \mathbf{k})$		1M	
		$=\mathbf{i}+\mathbf{j}-2\mathbf{k}$			
		$\overrightarrow{MN} / / \left(\overrightarrow{AB} \times \overrightarrow{OC} \right)$			
		$\therefore \frac{a+b-1}{1} = \frac{b-a}{1} = \frac{b}{-2}$		1M	
				1	
		Solving, we get $a = \frac{1}{2}$ and $b = \frac{1}{3}$.		1A+1A	

口阳勃研桑朗

	ERS' USE ONL	AudentBounty.com
Solution	Marks	18
(iii) $\overrightarrow{MN} = \frac{-1}{6}\mathbf{i} - \frac{1}{6}\mathbf{j} + \frac{1}{3}\mathbf{k}$		OH.
The shortest distance between the lines AB and OC		12
$=\left \overrightarrow{MN} ight $.6
$(1)^2 (1)^2 (1)^2$		3
$=\sqrt{\left(\frac{-1}{6}\right)^2+\left(\frac{-1}{6}\right)^2+\left(\frac{1}{3}\right)^2}$	1M	
$=\frac{\sqrt{6}}{6}$	1.4	•
$=\frac{1}{6}$	1A	
	(8)	
(b) (i) $\overrightarrow{AB} \times \overrightarrow{AC} = (-\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + \mathbf{k})$		
$=\mathbf{i}+\mathbf{j}-\mathbf{k}$	1A	G Å
(ii) Let the intersecting point of the two lines, OC and MN he D		
(ii) Let the intersecting point of the two lines OG and MN be P .		N
Since P lies on MN, let $\overrightarrow{MP} = \lambda \overrightarrow{MN}$.	1M	
$\overrightarrow{OP} = \overrightarrow{OM} + \overrightarrow{MP}$	$x \stackrel{\checkmark}{\leftarrow} A$	
$= \frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} + \lambda \left(\frac{-1}{6}\mathbf{i} - \frac{1}{6}\mathbf{j} + \frac{1}{3}\mathbf{k}\right)$		mspace + G
$= \frac{3-\lambda}{6}\mathbf{i} + \frac{3-\lambda}{6}\mathbf{j} + \frac{\lambda}{3}\mathbf{k}$	1A	
Since P lies on \overrightarrow{OG} , \overrightarrow{OP} // $(\overrightarrow{AB} \times \overrightarrow{AC})$.		
$\therefore \frac{3-\lambda}{6} = -\frac{\lambda}{3}$	1M	P^{\dagger}
$\lambda = -3$		
Alternative Solution		
Since P lies on OG , \overrightarrow{OP} // $(\overrightarrow{AB} \times \overrightarrow{AC})$.		
Let $\overrightarrow{OP} = t(\mathbf{i} + \mathbf{j} - \mathbf{k})$	1M	
\overrightarrow{M} (i.i. 1.)		



 $\overrightarrow{MP} = t(\mathbf{i} + \mathbf{j} - \mathbf{k}) - \left(\frac{1}{2}\mathbf{i} + \frac{1}{2}\mathbf{j}\right)$ $= \frac{2t - 1}{2}\mathbf{i} + \frac{2t - 1}{2}\mathbf{j} - t\mathbf{k}$ 1A Since P lies on MN, MP // MN. 1M t = 1

	只限教師參閱 FOR TEAC Solution	HERS' USE ONL Marks 1M 1A 1
(a)	Let $u = x - p$.	1M
	$\therefore du = dx$ When $x = 0$, $u = -p$; when $x = 2p$, $u = p$.	
	$\therefore \int_0^{2p} f(x-p) dx = \int_{-p}^p f(u) du$	1A
	$\int_{0}^{\infty} f(x-y) dx = \int_{-p}^{\infty} f(x) dx$ $= 0 \text{since f is an odd function}$	
	$\int_{0}^{2p} [f(x-p)+q] dx = 0 + [qx]_{0}^{2p}$	
	$\int_0^{\infty} \frac{1}{1} (x - p) + q_1 dx = 0 + [qx_1]_0$ $= 2pq$	1A
	- 2 pq	
		(4)
	$\sqrt{3} + \tan\left(x - \frac{\pi}{4}\right) = \sqrt{3} + \frac{\tan x - \frac{1}{\sqrt{3}}}{4}$	
(b)	$\frac{\sqrt{3} + \tan \left(\frac{x}{6}\right)}{\sqrt{3}} = \frac{1 + \frac{1}{\sqrt{3}} \tan x}{\tan x}$	1M
	$\frac{\sqrt{3} + \tan\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - \tan\left(x - \frac{\pi}{6}\right)} = \frac{\sqrt{3} + \frac{\tan x - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}\tan x}}{\sqrt{3} - \frac{\tan x - \frac{1}{\sqrt{3}}}{1 + \frac{1}{\sqrt{3}}\tan x}}$	
	V S	
	$= \frac{3 + \sqrt{3} \tan x + \sqrt{3} \tan x - 1}{3 + \sqrt{3} \tan x - \sqrt{3} \tan x + 1}$	
	$=\frac{1+\sqrt{3}\tan x}{2}$	1
	2	(2)
(c)	$\int_0^{\frac{\pi}{3}} \ln(1+\sqrt{3}\tan x) dx = \int_0^{\frac{\pi}{3}} \ln\left[\frac{\sqrt{3}+\tan\left(x-\frac{\pi}{6}\right)}{\sqrt{3}-\tan\left(x-\frac{\pi}{6}\right)} \cdot 2\right] dx \text{by (b)}$ $= \int_0^{\frac{\pi}{3}} \left[\ln\frac{\sqrt{3}+\tan\left(x-\frac{\pi}{6}\right)}{\sqrt{3}-\tan\left(x-\frac{\pi}{6}\right)} + \ln 2\right] dx$	1 M
	Consider $f(x) = \ln \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x}$.	
	$f(-x) = \ln \frac{\sqrt{3} + \tan(-x)}{\sqrt{3} - \tan(-x)}$	\
	$= \ln \frac{\sqrt{3} - \tan x}{\sqrt{3} + \tan x}$	
	·	
	$= \ln \left(\frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right)^{-1}$	
	$= -\ln \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x}$	
	$- \sin \sqrt{3} - \tan x$ $= -f(x)$	
	$= -\Gamma(x)$ $\therefore f(x) \text{ is an odd function}$	1A
	$\therefore \int_0^{\frac{\pi}{3}} \ln(1+\sqrt{3}\tan x) \mathrm{d}x = \int_0^{2\times\frac{\pi}{6}} \left[f\left(x-\frac{\pi}{6}\right) + \ln 2 \right] \mathrm{d}x$	
	$= \frac{\pi \ln 2}{3} \text{by (a)}$	1A
	3	

只限教師參閱 FOR TEACHERS'	USE O	NL CO
Solution	Marks	376
14. (a) The volume of the solid of revolution		30
$=\pi \int_0^h (25-y^2) dy$	1M	17/
$=\pi \left[25y - \frac{y^3}{3}\right]_0^h$		NA CIDENTIBOUNTS, CO.
$=\left(25h-\frac{h^3}{3}\right)\pi$	1	`
(3)	(2)	
	(2)	
(b) (i) By (a), $V = \left(25h - \frac{h^3}{3}\right)\pi$ for $0 \le h \le 4$ $\frac{dV}{dt} = \left(25\frac{dh}{dt} - h^2\frac{dh}{dt}\right)\pi$	1A	
When $h=3$, $8 = (25-3^2)\pi \frac{dh}{dt}$ $\frac{dh}{dt} = \frac{1}{2\pi}$ i.e. the rate of increase of the depth of coffee is $\frac{1}{2\pi}$ cm s ⁻¹ .	1A	
(ii) Let x , l , r and h be the lengths as shown in the figure. $x^2 + 4^2 = 25$ $x = 3$	1A	r
By similar triangles, $\frac{x}{l} = \frac{6}{8+l}$	1M	8
$24+3l = 6l$ $l = 8$ By similar triangles, $\frac{r}{h-4+l} = \frac{6}{8+l}$		h
$r = \frac{3(h+4)}{2}$	1.	5-1
8	1A	
$\therefore V = \left[25(4) - \frac{(4)^3}{3}\right] \pi + \frac{\pi}{3} \left[\frac{3(h+4)}{8}\right]^2 (h+4) - \frac{\pi}{3} (3)^2 (8)$	1M	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Alternative Solution		
Locating the origin at the centre of the base and the <i>x</i> -axis along the base of the frustum, the equation of a slang edge of the frustum is		
$\frac{y-0}{x-3} = \frac{8-0}{6-3}$	1M	[_
$x-3 6-3 x = \frac{3}{8}(y+8)$	1A	
$\therefore V = \left[25(4) - \frac{(4)^3}{3}\right] \pi + \pi \int_0^{h-4} \frac{9}{64} (y+8)^2 \mathrm{d}y$	1M	$\begin{vmatrix} \ddots & & \\ & \ddots & & \\ & & 0 & 3 \\ \end{vmatrix} > x$
$= \frac{236\pi}{3} + \frac{9\pi}{64} \left[\frac{(y+8)^3}{3} \right]_0^{h-4}$		

口阳数研桑朗

		Student Bounty.	
只限教師參閱 FOR TEACHERS'	USE ON	Mag	_
Solution (iii) After 15 seconds, $\frac{164\pi}{3} + \frac{3\pi}{64}(12+4)^3 - 2 \times 15 = \frac{164\pi}{3} + \frac{3\pi}{64}(h+4)^3$	Marks 1M	188	-
3 01	1 1V1	SIME	
$\frac{3\pi}{64}(h+4)^3 = 192\pi - 30$		3.0	o.
$h+4=4\left(\frac{64\pi-10}{\pi}\right)^{\frac{1}{3}}$	1A		7
$h \approx 11.73 > 4$			
$V = \frac{164\pi}{3} + \frac{3\pi}{64} (h+4)^3$			
$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{9\pi}{64}(h+4)^2 \frac{\mathrm{d}h}{\mathrm{d}t}$	1A		
After 15 seconds, $-2 = \frac{9\pi}{64} \left[4 \left(\frac{64\pi - 10}{\pi} \right)^{\frac{1}{3}} \right]^{2} \frac{dh}{dt}$			
$\frac{\mathrm{d}h}{\mathrm{d}t} = \frac{-8}{9\pi^{\frac{1}{3}} (64\pi - 10)^{\frac{2}{3}}}$			
≈ -0.0183 i.e. the rate of decrease of the depth of coffee is $0.0183\mathrm{cms}^{-1}$.	1A		
i.e. the rate of decrease of the depth of conee is 0.0163 chrs .			
	(11)	_	