香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

Student Bounts, com 香港中學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

練習卷 PRACTICE PAPER

數學 必修部分 試卷一 MATHEMATICS COMPULSORY PART PAPER 1

評卷參考 MARKING SCHEME

本評卷參考乃香港考試及評核局專爲本科練習卷而編寫,供教師和 學生參考之用。學生不應將評卷參考視爲標準答案,硬背死記,活 剝生吞。這種學習態度,既無助學生改善學習,學懂應對及解難, 亦有違考試着重理解能力與運用技巧之旨。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for teachers' and students' reference. This marking scheme should NOT be regarded as a set of model answers. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, will not help students to improve their learning nor develop their abilities in addressing and solving problems.

◎香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

Hong Kong Diploma of Secondary Education Examination **Mathematics Compulsory Part Paper 1**

General Marking Instructions

- Student Bounts, com 1. This marking scheme has been updated, with revisions made after the scrutiny of actual samples of student performance in the practice papers. Teachers are strongly advised to conduct their own internal standardisation procedures before applying the marking schemes. After standardisation, teachers should adhere to the marking scheme to ensure a uniform standard of marking within the school.
- 2. It is very important that all teachers should adhere as closely as possible to the marking scheme. In many cases, however, students will have obtained a correct answer by an alternative method not specified in the marking scheme. In general, a correct answer merits all the marks allocated to that part, unless a particular method has been specified in the question. Teachers should be patient in marking alternative solutions not specified in the marking scheme.
- 3. In the marking scheme, marks are classified into the following three categories:

'M' marks awarded for correct methods being used; 'A' marks awarded for the accuracy of the answers;

Marks without 'M' or 'A' awarded for correctly completing a proof or arriving

at an answer given in a question.

In a question consisting of several parts each depending on the previous parts, 'M' marks should be awarded to steps or methods correctly deduced from previous answers, even if these answers are erroneous. However, 'A' marks for the corresponding answers should NOT be awarded (unless otherwise specified).

- 4. For the convenience of teachers, the marking scheme was written as detailed as possible. However, it is still likely that students would not present their solution in the same explicit manner, e.g. some steps would either be omitted or stated implicitly. In such cases, teachers should exercise their discretion in marking students' work. In general, marks for a certain step should be awarded if students' solution indicated that the relevant concept/technique had been used.
- 5. Use of notation different from those in the marking scheme should not be penalized.
- In marking students' work, the benefit of doubt should be given in the students' favour. 6.
- 7. Marks may be deducted for wrong units (u) or poor presentation (pp).
 - The symbol (u-1) should be used to denote 1 mark deducted for u. At most deduct 1 mark for u in a each of Section A(1) and Section A(2). Do not deduct any marks for u in Section B.
 - The symbol (pp-1) should be used to denote 1 mark deducted for pp. At most deduct 1 mark for b. pp in each of Section A(1) and Section A(2). Do not deduct any marks for pp in Section B.
 - At most deduct 1 mark in each of Section A(1) and Section A(2). c.
 - d. In any case, do not deduct any marks in those steps where students could not score any marks.
- 8. In the marking scheme, 'r.t.' stands for 'accepting answers which can be rounded off to' and 'f.t.' stands for 'follow through'. Steps which can be skipped are shaded whereas alternative answers are enclosed with rectangles. All fractional answers must be simplified.

Solution	Marks	Remarks
Solution	IVIdIKS	Remarks for $(ab)^p = a^p b^p$ or $(a^p)^q =$
$\frac{(m^5n^{-2})^6}{}$		Sty.
$m^4 n^{-3}$		12.
$=\frac{m^{30}n^{-12}}{m^4n^{-3}}$	1M	for $(ab)^p = a^p b^p$ or $(a^p)^q =$ $for \frac{a^p}{a^q} = a^{p-q} \text{ or } \frac{a^p}{a^q} = \frac{1}{a^{q-p}}$
$\frac{m^{n}}{m^{30-4}}$		$\begin{bmatrix} a^p \\ -a \end{bmatrix}$
$=\frac{n}{n^{12-3}}$	1M	$\int \text{for } \frac{a}{a^q} = a^{p-q} \text{ or } \frac{a}{a^q} = \frac{1}{a^{q-p}}$
$=\frac{m^{26}}{n^9}$	1A	
n^9	(3)	
	(3)	
$\frac{5+b}{1-a} = 3b$		
1-a $5+b=3b(1-a)$	1M	for $3b(1-a)$
5+b=3b(1-a) $5+b=3b-3ab$	I IVI	$\int_{0}^{\infty} 101 \ 3\theta(1-u)$
3ab = 2b - 5	1M	for putting a on one side
$a = \frac{2b - 5}{3b}$	1A	or equivalent
$\frac{5+b}{1-a} = 3b$		
$ \begin{vmatrix} 1-a \\ 5+b = 3b(1-a) \end{vmatrix} $	1M	for $3b(1-a)$
$a = 1 - \frac{5+b}{3b}$	1M	for putting a on one side
	111/1	for putting <i>a</i> on one side
$a = \frac{3b - (5+b)}{3b}$		
$a = \frac{2b-5}{a}$	1A	or equivalent
3b	(3)	
2		
(a) $9x^2 - 42xy + 49y^2$		
$= (3x - 7y)^2$	1A	or equivalent
(b) $9x^2 - 42xy + 49y^2 - 6x + 14y$		
$= (3x - 7y)^2 - 6x + 14y$	1M	for using (a)
$= (3x - 7y)^2 - 2(3x - 7y)$		
= (3x - 7y)(3x - 7y - 2)	1A	or equivalent
	(3)	

			13.
	Solution	Marks	Remarks
4.	Let \$ x be the marked price of the chair. x(1-20%) = 360(1+30%) $x = \frac{360(1.3)}{0.8}$	1M+1M+1A	Remarks pp-1 for undefine 1M for x(1-20%) + 1M for 360(1+30%)
	x = 585 Thus, the marked price of the chair is \$585.	1A	u–1 for missing unit
	The marked price of the chair $= \frac{360(1+30\%)}{1-20\%}$ = \$585	1M+1M+1A 1A	1M for 360(1+30%) + 1M for dividing by (1-20%) u-1 for missing unit
		(4)	
	Let x litres and y litres be the capacities of a bottle and a cup respectively.		pp-1 for undefined symbol
	$\begin{cases} \frac{x}{y} = \frac{4}{3} \\ 7x + 9y = 11 \end{cases}$	}1A+1A	
	So, we have $7x + 9\left(\frac{3x}{4}\right) = 11$.	1M	for getting a linear equation in x or y only
	Solving, we have $x = \frac{4}{5}$.	1A	0.8
	Thus, the capacity of a bottle is $\frac{4}{5}$ litre.		u–1 for missing unit
	Let x litres be the capacity of a bottle. $7x + 9\left(\frac{3x}{4}\right) = 11$	1A+1M+1A	pp-1 for undefined symbol 1A for $y = \frac{3x}{4} + 1M$ for $7x + 9y = 11$
	Solving, we have $x = \frac{4}{5}$.	1A	0.8
	Thus, the capacity of a bottle is $\frac{4}{5}$ litre.		u–1 for missing unit
		(4)	

1M	Remarks for considering f.t.
1M	
1A (4)	
1A	
1M	
1M	
1A	u-1 for missing unit
1M	
1M	
1A	
1A	u-1 for missing unit
(4)	
_	1M 1A (4) 1M 1M 1M 1M 1A

		7x.
Solution	Marks	Remarks
ordinates of A'	1A	Remarks pp–1 for missing '(' or ')'
ordinates of B'	1A	pp–1 for missing '(' or ')'
be the coordinates of P . $x^2 + (y-4)^2 = \sqrt{(x-5)^2 + (y-(-2))^2}$ $x^2 + y^2 - 8y + 16 = x^2 - 10x + 25 + y^2 + 4y + 4$ $x^2 - 4 = 0$	1M+1A	
required equation is $x-3y-1=0$.	1A	or equivalent
poordinates of the mid-point of $A'B'$, $\frac{4+(-2)}{2}$	1M	
ope of $A'B'$ 2) equired equation is $y-1=\frac{1}{3}(x-4)$.	1A	
e required equation is $x-3y-1=0$.	1A (5)	or equivalent
east possible value of the inter-quartile range of the distribution or $2-2$ reatest possible value of the inter-quartile range of the distribution	1M 1A	either one
r = 9 and the median of the distribution is 3, s = 9 + 8 > 12 + s. There, we have $s < 5$. There are 4 possible values of s .	1A 1M 1A (5)	f.t.
	pordinates of B' 2) be the coordinates of P . $ \frac{1}{2}(y-4)^2 = \sqrt{(x-5)^2 + (y-(-2))^2} $ $ \frac{1}{2}9 + y^2 - 8y + 16 = x^2 - 10x + 25 + y^2 + 4y + 4 $ $ \frac{1}{2} - 4 = 0 $ required equation is $x - 3y - 1 = 0$. Proordinates of the mid-point of $A'B'$ $ \frac{1}{2}(x-4) = \frac{1}{3}(x-4) = \frac$	ordinates of A' 1A 1b ordinates of B' 1b ordinates of B' 1c ordinates of B' 1c ordinates of B' 1d ordinates of the mid-point of $A'B'$ 1d ordinates of the mid-point of $A'B'$ 1d ordinates of the mid-point of $A'B'$ 2d ordinates of the mid-point of $A'B'$ 2d ordinates of $A'B'$ 2d ordinates of the mid-point of $A'B'$ 2d ordinates of the mid-point of $A'B'$ 1d ordinates of $A'B'$ 2d ordinates of $A'B'$ 1d ordinates of $A'B'$ 2d ordinates of $A'B'$ 2d ordinates of $A'B'$ 1d ordinates of $A'B'$ 1d ordinates of $A'B'$ 2d ordinates of $A'B'$ 2d ordinates of $A'B'$ 1d ordinates of $A'B'$

		Solution	Marks	Remarks
10.	(a)	Note that when $f(x)$ is divided by $x-1$, the remainder is 4. $f(x)$ $= (x-1)(6x^2 + 17x - 2) + 4$	1M	Remarks can be absorbed for $(x-1)(6x^2+17x-2)$
		$= (x-1)(6x^{2}+1)(x-2)+4$ $= 6x^{3}+11x^{2}-19x+6$	111/1	$101 (x-1)(0x^{2}+17x-2)$
		$f(-3)$ = $6(-3)^3 + 11(-3)^2 - 19(-3) + 6$ = 0	1A (3)	
	(b)	$f(x)$ = $(x+3)(6x^2 - 7x + 2)$ = $(x+3)(2x-1)(3x-2)$	1M+1A 1A (3)	1M for $(x+3)(ax^2 + bx + c)$
11.	(a)	Let $C = a + bx^2$, where a and b are non-zero constants. So, we have $a + (20^2)b = 42$ and $a + (120^2)b = 112$.	1A 1M	for either substitution
		Solving, we have $a = 40$ and $b = \frac{1}{200}$. The required cost	1A	for both correct
		$= 40 + \frac{1}{200}(50^2)$ = \$ 52.5	1A (4)	u-1 for missing unit
	(b)	$40 + \frac{1}{200}x^2 = 58$ $x^2 = 3600$	1M	
		x = 60 Thus, the required length is 60 cm.	1A (2)	u–1 for having unit

				12
		Solution	Marks	Remarks
12. (a)	The required duration = 63 - 32 = 31 minutes	1M 1A (2)	Remarks u–1 for missing unit
(b)	Suppose Ada and Billy meet at a place which is at a distance of x km from town P . $\frac{x}{78} = \frac{12}{120}$ $x = 7.8$ Thus, Ada and Billy meet at a place which is at a distance of x km from town x .	1M+1A 1A	pp-1 for undefined symbol 1M for ratio 78:120 u-1 for missing unit
(c)	The average speed of Ada $= \frac{12}{2}$ $= 6 \text{ km/h}$ The average speed of Billy $= \frac{16-2}{2}$ $= 7 \text{ km/h}$ Note that $7 > 6$. Thus, Billy runs faster.	1M	either one
		During the period, Ada runs 12 km while Billy runs 14 km. Note that 14 > 12. So, the average speed of Billy is higher than that of Ada. Thus, Billy runs faster.	1M 1A (2)	f.t.

				Tag.
		Solution	Marks	Remarks
13.	(a)	Let <i>n</i> be the number of students in the group. $\frac{6}{n} = \frac{3}{20}$ $n = 40$	1M	Remarks pp–1 for undefine
		k = 40 - 6 - 11 - 5 - 10 = 8	1M 1A (3)	
	(b)			
		$=\frac{5}{40}(360^{\circ})$	1M	
		= 45°	1A	u−1 for missing unit
		(ii) Let <i>m</i> be the number of new students. Assume that the angle of the sector representing that the most favourite fruit is orange will be doubled.		pp-1 for undefined symbol
		$\frac{5+m}{40+m} = \frac{(45)(2)}{360}$ $20+4m = 40+m$	1M	for considering $\frac{5+m}{n+m}$
		3m = 20 Since 20 is not a multiple of 3, the angle of the sector representing that the most favourite fruit is orange will not be doubled.	1A (4)	f.t.

		Solution			Remarks
	() ()			Marks	Remarks
4. (a	a)	ΔBC	$CD \sim \Delta OAD$	2A (2)	Remarks
		<i>(</i> *)		. ,	
(I	b)		Let $(0, h)$ be the coordinates of C .	1M	
			By (a), we have $\left(\frac{CD}{AD}\right)^2 = \frac{16}{45}$.	1M	for using similarity
			$\left(\frac{12-h}{\sqrt{6^2+12^2}}\right)^2 = \frac{16}{45}$	1M	for either AD or CD
			$h^2 - 24h + 80 = 0$		
			h = 4 or $h = 20$ (rejected)	1A	1 for missing '(' or ')'
			Thus, the coordinates of C are $(0,4)$.		pp–1 for missing '(' or ')'
		(ii)	Note that AC is a diameter of the circle $OABC$.	1M	
			So, the coordinates of the centre of the circle are (3, 2).	1M	either one
			Also, the radius of the circle is $\sqrt{(3-0)^2 + (4-2)^2} = \sqrt{13}$.		i
			Thus, the equation of the circle <i>OABC</i> is $(x-3)^2 + (y-2)^2 = 13$.	1A	$x^2 + y^2 - 6x - 4y = 0$
			Suppose that the equation of the circle <i>OABC</i> is		
			$x^2 + y^2 + k_1 x + k_2 y + k_3 = 0$, where k_1 , k_2 and k_3 are constants.	1M	
			$0^2 + 0^2 + k_1(0) + k_2(0) + k_3 = 0$		
			$\begin{cases} 0^2 + 0^2 + k_1(0) + k_2(0) + k_3 = 0 \\ 6^2 + 0^2 + k_1(6) + k_2(0) + k_3 = 0 \\ 0^2 + 4^2 + k_1(0) + k_2(4) + k_3 = 0 \end{cases}$		
			$0^2 + 4^2 + k_1(0) + k_2(4) + k_3 = 0$		
			Solving, we have $k_1 = -6$, $k_2 = -4$ and $k_3 = 0$.	1M	for solving system of equation
			Thus, the equation of the circle <i>OABC</i> is $x^2 + y^2 - 6x - 4y = 0$.	1A	
				(7)	

		Solution	Marks	Remarks
15.	(a)	Let s be the standard deviation of the scores in the test.		Remarks
		$\frac{36-48}{3} = -2$	1M	
		S		
		s = 6		ei
		The standard score of John in the test		
		$=\frac{66-48}{6}$		
		= 3	1A	
			(2)	
	(b)	Note that the score of David is equal to the mean of the scores.		
		So, the mean of the scores remains unchanged. The sum of squares of the deviations of the scores in the test remains		
		unchanged while the number of students decreases by 1.		
		Therefore, the standard deviation increases.	1M	
		Hence, the standard score of John decreases. Thus, the standard score of John will change.	1A	f.t.
		Thus, the standard score of voint will entange.	(2)	

	Solution	Marks	Remarks
6. (a)	The required probability		Remarks for numerator or denon
o. (u)			28
	$=\frac{C_4^{18}}{C_4^{30}}$	1M	for numerator or denoi
	$=\frac{68}{}$	1.4	. 0.112
	$=\frac{1}{609}$	1A	r.t. 0.112
	The required probability		
	(18)(17)(16)(15)		(r)(r-1)(r-2)(r-3)
	$= \left(\frac{18}{30}\right) \left(\frac{17}{29}\right) \left(\frac{16}{28}\right) \left(\frac{15}{27}\right)$	1M	for $\left(\frac{r}{n}\right)\left(\frac{r-1}{n-1}\right)\left(\frac{r-2}{n-2}\right)\left(\frac{r-3}{n-3}\right)$, $r < n$
	$=\frac{68}{}$	1A	r.t. 0.112
	609	(2)	
		(2)	
(b)	The required probability		
	$=1-\frac{68}{609}-\frac{C_4^{12}}{C_4^{30}}$	1M	for $1 - (a) - p_1$
	$=\frac{530}{609}$	1A	r.t. 0.870
	007		
	The required probability		
	$=\frac{C_1^{18}C_3^{12}+C_2^{18}C_2^{12}+C_3^{18}C_1^{12}}{C_4^{30}}$	1M	for considering 3 cases
	T T T T T T T T T T T T T T T T T T T		
	$=\frac{530}{609}$	1A	r.t. 0.870
	The required probability		
	$=1 - \frac{68}{609} - \left(\frac{12}{30}\right) \left(\frac{11}{29}\right) \left(\frac{10}{28}\right) \left(\frac{9}{27}\right)$	1M	for $1 - (a) - p_2$
	530		0.050
	$=\frac{330}{609}$	1A	r.t. 0.870
	The required probability		
	$\begin{array}{c} \text{The required probability} \\ \text{4} & (18 \text{ y} 12 \text{ y} 11 \text{ y} 10) \\ \text{5} & (18 \text{ y} 17 \text{ y} 12 \text{ y} 11) \\ \text{7} & (18 \text{ y} 17 \text{ y} 16 \text{ y} 12) \end{array}$	42.6	
	$=4\left(\frac{18}{30}\right)\left(\frac{12}{29}\right)\left(\frac{11}{28}\right)\left(\frac{10}{27}\right)+6\left(\frac{18}{30}\right)\left(\frac{17}{29}\right)\left(\frac{12}{28}\right)\left(\frac{11}{27}\right)+4\left(\frac{18}{30}\right)\left(\frac{17}{29}\right)\left(\frac{16}{28}\right)\left(\frac{12}{27}\right)$	1M	for considering 14 cases
	$=\frac{530}{}$	1A	r.t. 0.870
	609	(2)	

	Solution	Marks	Remarks
=	$\frac{1}{1+2i}$ $\left(\frac{1}{1+2i}\right)\left(\frac{1-2i}{1-2i}\right)$ $\frac{1}{5} - \frac{2}{5}i$	1M 1A	Remarks
(b) (i)	Note that $\frac{10}{1+2i} = 2-4i$ and $\frac{10}{1-2i} = 2+4i$. The sum of roots $= \frac{10}{1+2i} + \frac{10}{1-2i}$ $= (2-4i) + (2+4i)$ $= 4$ The product of roots $= \left(\frac{10}{1+2i}\right) \left(\frac{10}{1-2i}\right)$ $= 20$ Thus, we have $p = -4$ and $q = 20$. When the equation $x^2 - 4x + 20 = r$ has real roots, we have $\Delta \ge 0$. So, we have $(-4)^2 - 4(1)(20 - r) \ge 0$. Thus, we have $r \ge 16$.	1M 1A 1M 1A(5)	either either either for both correct

	Solution	Marks	Remarks
(a)	By cosine formula, $AB^{2} = AC^{2} + BC^{2} - 2(AC)(BC)\cos \angle ACB$	1M	Remarks
	$AB^2 = 20^2 + 12^2 - 2(20)(12)\cos 60^\circ$		
	$AB = 4\sqrt{19}$ cm	1A	r.t. 17.4 cm $AB \approx 17.43559577$ cm
(b)	By sine formula, $\frac{\sin \angle BAC}{BC} = \frac{\sin \angle ACB}{AB}$ $\frac{\sin \angle BAC}{12} = \frac{\sin 60^{\circ}}{4\sqrt{19}}$ $\angle BAC \approx 36.58677555^{\circ}$ Let Q be the foot of the perpendicular from C to AB . $\sin \angle BAC = \frac{CQ}{AC}$	1M	
	$CQ \approx 20 \sin 36.58677555^{\circ}$ $CQ \approx 11.92079121 \text{ cm}$ Since $\triangle ABC \cong \triangle ABD$, the required angle is $\angle CQD$. $\sin \frac{\angle CQD}{2} = \frac{1}{2} \frac{CD}{CQ}$ $\sin \frac{\angle CQD}{2} \approx 0.587209345$	1 M	for identifying the angle
	$\angle CQD \approx 71.91844786^{\circ}$ $\angle CQD \approx 71.9^{\circ}$ Thus, the angle between the plane <i>ABC</i> and the plane <i>ABD</i> is 71.9°.	1A	r.t. 71.9°
	By sine formula, $\frac{\sin \angle ABC}{AC} = \frac{\sin \angle ACB}{AB}$ $\frac{\sin \angle ABC}{20} = \frac{\sin 60^{\circ}}{4\sqrt{19}}$ $\angle ABC \approx 83.41322445^{\circ}$	1M	
	Let Q be the foot of the perpendicular from C to AB . $\sin \angle ABC = \frac{CQ}{BC}$ $CQ \approx 12 \sin 83.41322445^{\circ}$ $CQ \approx 11.92079121 \text{ cm}$	1M	
	Since $\triangle ABC \cong \triangle ABD$, the required angle is $\angle CQD$. $\sin \frac{\angle CQD}{2} = \frac{\frac{1}{2}CD}{CQ}$ $\sin \frac{\angle CQD}{2} \approx 0.587209345$	1M	for identifying the angle
		1A	r.t. 71.9°

Solution	Marks	Remarks
		0
By sine formula, $\frac{\sin \angle BAC}{= \frac{\sin \angle ACB}{= \frac{\sin \angle ACB}{= \frac{\sin \triangle ACB}{= \frac{\sin \triangle ACB}{= \frac{\cos ACB}{= \cos $	1M	Remarks
$\frac{BC}{\sin \angle BAC} = \frac{AB}{\sin 60^{\circ}}$ $\frac{\sin \angle AB}{12} = \frac{\sin 60^{\circ}}{4\sqrt{19}}$		
∠BAC ≈ 36.58677555°		
Let Q be the foot of the perpendicular from C to AB . $\sin \angle BAC = \frac{CQ}{AC}$	1M	
$CQ \approx 20 \sin 36.58677555^{\circ}$		
$CQ \approx 11.92079121 \text{ cm}$ By symmetry, we have $DQ = CQ$.		
$DQ \approx 11.92079121 \text{ cm}$ Since $\triangle ABC \cong \triangle ABD$, the required angle is $\angle CQD$.	13.4	
Since $\triangle ABC = \triangle ABD$, the required angle is $\angle CQD$. $CD^2 = CQ^2 + DQ^2 - 2(CQ)(DQ)\cos \angle CQD$	1M	for identifying the angle
$14^2 \approx 11.92079121^2 + 11.92079121^2 - 2(11.92079121)(11.92079121)\cos \angle CQD$ \(\angle CQD \approx 71.91844786^\circ\)	,	
∠ <i>CQD</i> ≈ 71.9°	1A	r.t. 71.9°
Thus, the angle between the plane ABC and the plane ABD is 71.9° .		
The area of $\triangle ABC$		
$= \frac{1}{2} (AC)(BC) \sin \angle ACB$	1M	
$= \frac{1}{2}(20)(12)\sin 60^{\circ}$		
$= 60\sqrt{3} \text{ cm}^2$ Let Q be the foot of the perpendicular from C to AB .		
$\frac{1}{2}(AB)(CQ) = 60\sqrt{3}$		
$\frac{1}{2}(4\sqrt{19})(CQ) = 60\sqrt{3}$	1M	
$CQ \approx 11.92079121 \text{ cm}$ Since $\triangle ABC \cong \triangle ABD$, the required angle is $\angle CQD$.	1M	for identifying the angle
		for identifying the ungle
$\sin \frac{\angle CQD}{2} = \frac{\frac{1}{2}CD}{CQ}$		
$\sin \frac{\angle CQD}{2} \approx 0.587209345$		
$\angle CQD \approx 71.91844786^{\circ}$ $\angle CQD \approx 71.9^{\circ}$	1A	r.t. 71.9°
Thus, the angle between the plane ABC and the plane ABD is 71.9°.	(4)	
Let Q be the foot of the perpendicular from C to AB .	(4)	
Note that $\sin \frac{\angle CPD}{2} = \frac{\frac{1}{2}CD}{CP}$.		
Since $CP \ge CQ$, we have $\angle CPD \le \angle CQD$.	1M	
Thus, $\angle CPD$ increases as P moves from A to Q and decreases as P moves from Q to B .	1A	f.t.
	(2)	

		Solution	Marks	Remarks
19. (a		$0000(1-r\%)^3 = 1048576$ $r\%)^3 = \frac{1048576}{4000000}$	1M	Remarks
		4000000 % = 0.64		
	r =		1A (2)	
(l	b) (i)	Let n be the number of years needed for the total revenue made by the firm to exceed \$9000000 .		
		$2000000 + 2000000(1 - 20\%) + \dots + 2000000(1 - 20\%)^{n-1} > 9000000$	1M	for left side
		$\frac{2000000(1-(0.8)^n)}{1-0.8} > 9000000$ $(0.8)^n < 0.1$	1M	for sum of geometric sequence
		$n \log 0.8 < \log 0.1$		
		$n > \frac{\log 0.1}{\log 0.8}$	1M	for solving inequality
		n > 10.31885116 Thus, the least number of years needed is 11.	1A	
	(ii)	The total revenue made by the firm $< 2000000 + 2000000(1 - 20\%) + 2000000(1 - 20\%)^2 + \cdots$		
		$=\frac{2000000}{1-0.8}$	1M	
		= 10 000 000	1A	f.t.
	(iii)	Thus, the total revenue made by the firm will not exceed \$10000000 . The total revenue made by the firm minus the total amount of investment in the first m years $= \frac{2000000(1 - (0.8)^m)}{1 - 0.8} - \frac{4000000(1 - (0.64)^m)}{1 - 0.64}$ $= 100000000 \left((1 - (0.8)^m) - \frac{10}{9} (1 - (0.64)^m) \right)$ $= 100000000 \left((1 - (0.8)^m) - \frac{10}{9} (1 - (0.8)^{2m}) \right)$	1 M	
		$= \frac{10000000}{9} \left(10 \left((0.8)^m \right)^2 - 9(0.8)^m - 1 \right)$ $= \frac{10000000}{9} \left(10 \left(0.8 \right)^m + 1 \right) \left((0.8)^m - 1 \right)$	1M	for quadratic expression
		Note that $(0.8)^m > 0$ and $(0.8)^m < 1$ for any positive integer m . Therefore, we have $10(0.8)^m + 1 > 0$ and $(0.8)^m - 1 < 0$. So, we have $\frac{2000000(1 - (0.8)^m)}{1 - 0.8} - \frac{4000000(1 - (0.64)^m)}{1 - 0.64} < 0$.	1M	for either one
		Thus, the claim is disagreed.	1A (10)	f.t.

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

Student Bounty.com HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

PRACTICE PAPER

MATHEMATICS COMPULSORY PART PAPER 2

Question No.	Key	Question No.	Key
1.	A	31.	D
2.	C	32.	В
3.	A	33.	C
4.	D	34.	D
5.	D	35.	A
6.	С	36.	В
7.	В	37.	A
8.	D	38.	C
9.	A	39.	A
10.	В	40.	C
11	D	4.1	В
11.	A	41.	A
12.		42.	
13.	A	43.	В
14.	В	44.	D
15.	С	45.	C
16.	D		
17.	С		
18.	A		
19.	D		
20.	C		
21.	C		
22.	В		
23.	C		
24.	D		
25.	В		
26.	D		
20. 27.	В		
28.	A		
29.	В		
30.	C		
30.	C		