PP-DSE MATH EP M2

HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY
HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION

## PRACTICE PAPER

# MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

## **Question-Answer Book**

(2½ hours) This paper must be answered in English

#### **INSTRUCTIONS**

- 1. After the announcement of the start of the examination, you should first write your Candidate Number in the space provided on Page 1 and stick barcode labels in the spaces provided on Pages 1, 3, 5 and 7.
- 2. This paper consists of Section A and Section B.
- Answer ALL questions in Section A. Write your answers in the spaces provided in this Question-Answer Book. Do not write in the margins. Answers written in the margins will not be marked.
- 4. Answer **ALL** questions in Section B. Write your answers in the other answer book. Start each question (not part of a question) on a new page.
- 5. Graph paper and supplementary answer sheets will be supplied on request. Write your Candidate Number, mark the question number box and stick a barcode label on each sheet, and fasten them with string **INSIDE** the book.
- 6. The Question-Answer book and the answer book will be collected separately at the end of the examination.
- 7. Unless otherwise specified, all working must be clearly shown.
- 8. Unless otherwise specified, numerical answers must be exact.
- 9. In this paper, vectors may be represented by bold-type letters such as  $\mathbf{u}$ , but candidates are expected to use appropriate symbols such as  $\vec{\mathbf{u}}$  in their working.
- 10. The diagrams in this paper are not necessarily drawn to scale.
- 11. No extra time will be given to candidates for sticking on the barcode labels or filling in the question number boxes after the 'Time is up' announcement.

© 香港考試及評核局 保留版權 Hong Kong Examinations and Assessment Authority All Rights Reserved 2012

| Please stick th  | ne | ba | 100 | 101 | 13 | 200 | her | re. |   |
|------------------|----|----|-----|-----|----|-----|-----|-----|---|
|                  |    |    |     |     |    |     |     | ,0  | 2 |
| Candidate Number |    |    |     |     |    |     |     |     | ? |
|                  |    |    |     |     |    |     |     |     |   |



#### FORMULAS FOR REFERENCE

$$\sin (A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$cos(A \pm B) = cos A cos B \mp sin A sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$2\sin A\cos B = \sin (A+B) + \sin (A-B)$$

$$2\cos A\cos B = \cos(A+B) + \cos(A-B)$$

$$2\sin A\sin B = \cos(A-B) - \cos(A+B)$$

EFERENCE
$$\sin A + \sin B = 2 \sin \frac{A+B}{2} \cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A+B}{2} \sin \frac{A-B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A+B}{2} \cos \frac{A-B}{2}$$

$$\sin A - \sin B = 2\cos\frac{A+B}{2}\sin\frac{A-B}{2}$$

$$\cos A + \cos B = 2\cos\frac{A+B}{2}\cos\frac{A-B}{2}$$

$$\cos A - \cos B = -2\sin\frac{A+B}{2}\sin\frac{A-B}{2}$$

Section A (50 marks)

Answer ALL questions in this section and write your answers in the spaces provided in this Question-Answer Book.

Answers written in the margins will not be marked Find the coefficient of  $x^5$  in the expansion of  $(2-x)^9$ .

(4 marks)

Consider the following system of linear equations in x, y, z

$$\begin{cases} x - 7y + 7z = 0 \\ x - ky + 3z = 0 \text{, where } k \text{ is a real number.} \\ 2x + y + kz = 0 \end{cases}$$

If the system has non-trivial solutions, find the two possible values of k.

(4 marks)

| *************************************** |
|-----------------------------------------|

| he | ba. | (%) | 1 | here. |
|----|-----|-----|---|-------|
|----|-----|-----|---|-------|

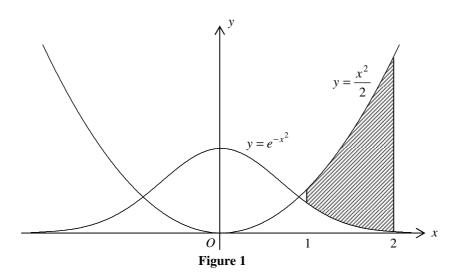
| Please stick the ba             |
|---------------------------------|
| 188                             |
| CITY.                           |
| 7.0                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
| ed.                             |
| mark                            |
| t be                            |
| the margins will not be marked. |
| w su                            |
| nargi                           |
|                                 |
| Answers written in              |
| writt                           |
| wers                            |
| Ans                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

| he | ba. | (%) | 1 | here. |
|----|-----|-----|---|-------|
|----|-----|-----|---|-------|

| Please stick the ba             |
|---------------------------------|
| 188                             |
| CITY.                           |
| 7.0                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
| ed.                             |
| mark                            |
| t be                            |
| the margins will not be marked. |
| w su                            |
| nargi                           |
|                                 |
| Answers written in              |
| writt                           |
| wers                            |
| Ans                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

| 5. | (a)  | It is given that $\cos(x+1) + \cos(x-1) = k \cos x$              | x for a | ny real | x. Fir                | nd the value of | of <i>k</i> . | (BOIL    |
|----|------|------------------------------------------------------------------|---------|---------|-----------------------|-----------------|---------------|----------|
|    | (b)  | Without using a calculator, find the value of                    | cos 4   | cos 5   | cos 3   cos 6   cos 9 |                 |               | (6 marks |
|    | Find | $\frac{d}{dx} \left( \frac{1}{x} \right)$ from first principles. |         |         |                       |                 |               | (4 marks |
|    |      |                                                                  |         |         |                       |                 |               |          |
|    |      |                                                                  |         |         | 101001101010101101    |                 |               |          |
|    |      |                                                                  |         |         |                       |                 |               |          |
|    |      |                                                                  |         |         |                       |                 |               |          |
|    |      |                                                                  |         |         |                       |                 |               |          |
|    |      |                                                                  |         |         |                       |                 |               |          |
|    |      |                                                                  |         |         |                       |                 |               |          |

| he | ba. | (%) | 1 | here. |
|----|-----|-----|---|-------|
|----|-----|-----|---|-------|


| Please stick the ba             |
|---------------------------------|
| 188                             |
| CITY.                           |
| 7.0                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
| ed.                             |
| mark                            |
| t be                            |
| the margins will not be marked. |
| w su                            |
| nargi                           |
|                                 |
| Answers written in              |
| writt                           |
| wers                            |
| Ans                             |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |
|                                 |

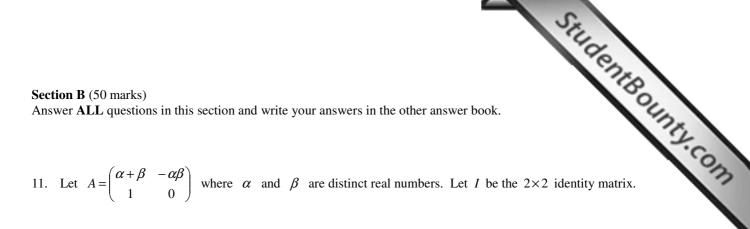
| 7. Le  | $f(x) = e^x (\sin x + \cos x) .$                                                  | OH        |
|--------|-----------------------------------------------------------------------------------|-----------|
| (a)    | Find $f'(x)$ and $f''(x)$ .                                                       |           |
| (b)    | Find the value of x such that $f''(x) - f'(x) + f(x) = 0$ for $0 \le x \le \pi$ . | (5 marks) |
| 8. (a) | $\sqrt{4-x^2}$                                                                    |           |
| (b)    | Using integration by parts, find $\int \ln x  dx$ .                               |           |
|        |                                                                                   | (5 marks) |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |
|        |                                                                                   |           |

|  | 18                                      |
|--|-----------------------------------------|
|  | To Olin                                 |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  |                                         |
|  | *************************************** |
|  |                                         |
|  |                                         |

10. (a) Find  $\int xe^{-x^2} dx$ .

(b)




| <del>-</del>                                       | $\longrightarrow x$                                                                                                               |
|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| ě                                                  | $O$ 1 2 $^{\circ}$ $^{\circ}$                                                                                                     |
| Answers written in the margins will not be marked. | - I                                                                                                                               |
| ΪÏ                                                 | Figure 1                                                                                                                          |
| <u>-</u>                                           |                                                                                                                                   |
| Ã                                                  |                                                                                                                                   |
| ot                                                 | In Figure 1, the shaded region is bounded by the curves $y = \frac{x^2}{2}$ and $y = e^{-x^2}$ , where $1 \le x \le 2$ . Find the |
| ğ                                                  | In Figure 1, the shaded region is bounded by the curves $v = \frac{x}{1}$ and $v = e^{-x}$ , where $1 \le x \le 2$ . Find the     |
| Ξl                                                 | $\frac{1}{2}$                                                                                                                     |
| .⊵∣                                                | volume of the solid generated by revolving the shaded region about the y-axis.                                                    |
| S                                                  | volume of the solid generated by revolving the shaded region about the y-axis.                                                    |
| .51                                                | (6 marks)                                                                                                                         |
| 50                                                 |                                                                                                                                   |
| 3a                                                 |                                                                                                                                   |
| 듸                                                  |                                                                                                                                   |
| he                                                 |                                                                                                                                   |
| Ţ                                                  |                                                                                                                                   |
| ·=                                                 |                                                                                                                                   |
| 띪                                                  |                                                                                                                                   |
| Ħ                                                  |                                                                                                                                   |
| ΞI                                                 |                                                                                                                                   |
| >                                                  |                                                                                                                                   |
| Z.                                                 |                                                                                                                                   |
| ×Ι                                                 |                                                                                                                                   |
| Si                                                 |                                                                                                                                   |
| 7                                                  |                                                                                                                                   |
| 7                                                  |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |
| l                                                  |                                                                                                                                   |
|                                                    |                                                                                                                                   |
|                                                    |                                                                                                                                   |

| 18 |
|----|
|    |
|    |
| •  |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |
|    |

www.StudentBounty.com Homework Help & Pastpapers

### Section B (50 marks)

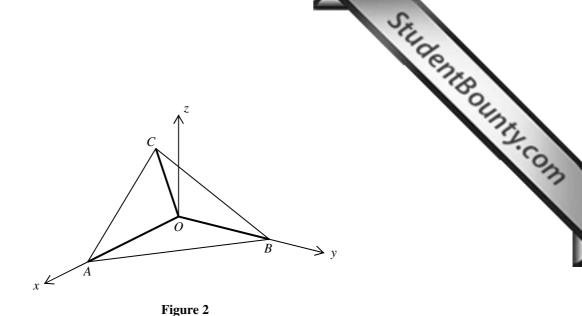
Answer ALL questions in this section and write your answers in the other answer book.



(a) Show that 
$$A^2 = (\alpha + \beta)A - \alpha\beta I$$
.

(2 marks)

(b) Using (a), or otherwise, show that 
$$(A - \alpha I)^2 = (\beta - \alpha)(A - \alpha I)$$
 and  $(A - \beta I)^2 = (\alpha - \beta)(A - \beta I)$ . (3 marks)


- (c) Let  $X = s(A \alpha I)$  and  $Y = t(A \beta I)$  where s and t are real numbers. Suppose A = X + Y.
  - Find s and t in terms of  $\alpha$  and  $\beta$ .
  - (ii) For any positive integer n, prove that

$$X^{n} = \frac{\beta^{n}}{\beta - \alpha} (A - \alpha I)$$
 and  $Y^{n} = \frac{\alpha^{n}}{\alpha - \beta} (A - \beta I)$ .

(iii) For any positive integer n, express  $A^n$  in the form of pA+qI, where p and q are real numbers. [Note: It is known that for any  $2\times 2$  matrices H and K,

if 
$$HK = KH = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, then  $(H + K)^n = H^n + K^n$  for any positive integer  $n$ .]

(9 marks)



Let  $\overrightarrow{OA} = \mathbf{i}$ ,  $\overrightarrow{OB} = \mathbf{j}$  and  $\overrightarrow{OC} = \mathbf{i} + \mathbf{j} + \mathbf{k}$  (see Figure 2). Let M and N be points on the straight lines AB and OC respectively such that AM : MB = a : (1-a) and ON : NC = b : (1-b), where 0 < a < 1 and 0 < b < 1. Suppose that MN is perpendicular to both AB and OC.

- (a) (i) Show that  $\overrightarrow{MN} = (a+b-1)\mathbf{i} + (b-a)\mathbf{j} + b\mathbf{k}$ .
  - (ii) Find the values of a and b.
  - (iii) Find the shortest distance between the straight lines AB and OC.

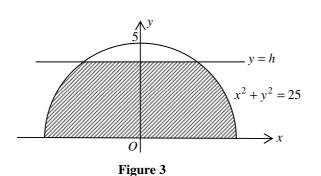
(8 marks)

- (b) (i) Find  $\overrightarrow{AB} \times \overrightarrow{AC}$ .
  - (ii) Let G be the projection of O on the plane ABC, find the coordinates of the intersecting point of the two straight lines OG and MN.

(5 marks)

13. (a) Let f(x) be an odd function for  $-p \le x \le p$ , where p is a positive constant.

Prove that 
$$\int_0^{2p} f(x-p) dx = 0$$
.


Hence evaluate 
$$\int_0^{2p} [f(x-p)+q] dx$$
, where q is a constant.

(b) Prove that 
$$\frac{\sqrt{3} + \tan\left(x - \frac{\pi}{6}\right)}{\sqrt{3} - \tan\left(x - \frac{\pi}{6}\right)} = \frac{1 + \sqrt{3} \tan x}{2}.$$

(2 marks)

(c) Using (a) and (b), or otherwise, evaluate 
$$\int_0^{\frac{\pi}{3}} \ln(1+\sqrt{3}\tan x) dx$$
.

(4 marks)



In Figure 3, the shaded region enclosed by the circle  $x^2 + y^2 = 25$ , the x-axis and the straight line y = h (where  $0 \le h \le 5$ ) is revolved about the y-axis. Show that the volume of the solid of revolution is  $\left(25h - \frac{h^3}{3}\right)\pi$ .

(2 marks)

Student Bounty.com

(b)

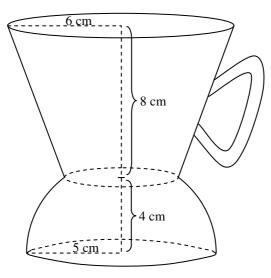



Figure 4

In Figure 4, an empty coffee cup consists of two portions. The lower portion is in the shape of the solid described in (a) with height 4 cm. The upper portion is a frustum of a circular cone. The height of the frustum is 8 cm. The radius of the top of the cup is 6 cm. Hot coffee is poured into the cup to a depth h cm at a rate of 8 cm<sup>3</sup>s<sup>-1</sup>, where  $0 \le h \le 12$ . Let V cm<sup>3</sup> be the volume of coffee in the cup.

- (i) Find the rate of increase of the depth of coffee when the depth is  $3\ cm$ .
- (ii) Show that  $V = \frac{164\pi}{3} + \frac{3\pi}{64}(h+4)^3$  for  $4 \le h \le 12$ .
- (iii) After the cup is fully filled, suddenly it cracks at the bottom. The coffee leaks at a rate of 2 cm<sup>3</sup>s<sup>-1</sup>. Find the rate of decrease of the depth of coffee after 15 seconds of leaking, giving your answer correct to 3 significant figures.

(11 marks)

Student Bounty.com

Do not write on this page.

Answers written on this page will not be marked.