RADLEY COLLEGE
 Entrance Scholarships

MATHEMATICS I

Tuesday 22nd February 2005
Time allowed 90 minutes

You may try the questions in any order and are not expected to complete them all.

Show all working.

1. (No calculating aids are to be used in this question)
a) Work out exactly
i) $\quad 4.91 \times 30.8$
ii) $\quad 436.58 \div 8.3$
b) Give the answers to the following as fractions in their simplest form
i) $\frac{31}{36}-\frac{5}{12}$
ii) $6 \frac{2}{9} \div 6 \frac{2}{5}$
iii) $\left(3 \frac{1}{2}+2 \frac{2}{7}\right) \times 1 \frac{5}{9}$
c) Give the answers to the following in standard form.
i) $\left(4 \times 10^{-4}\right)+\left(8 \times 10^{-5}\right)$
ii) $\left(8 \times 10^{-5}\right) \times\left(3 \times 10^{8}\right)$
iii) $\quad\left(6.4 \times 10^{5}\right) \div\left(8 \times 10^{-9}\right)$
2. (No calculating aids are to be used in this question)

Work out as simply as possible
a) $873^{2}-673^{2}$
b) $(67 \times 91)+(76 \times 67)-67^{2}$
c) $(73 \times 16)-(76 \times 27)+(57 \times 73)+(27 \times 49)$
d) $\frac{671^{2}+(29 \times 671)}{67.1 \times 35}$
3. a) Multiply out and simplify
i) $(2 x-3 y)^{2}$
ii) $\left(4 x^{2}-6 x y+9 y^{2}\right)(2 x+3 y)$
b) Factorise fully
i) $21 x y^{2}+28 x^{3} y$
ii) $20 x^{2}-45 y^{2}$
iii) $x^{2}+4 x-21$
c) Simplify
i) $\frac{a b-a c}{b^{2}-c^{2}}$
ii) $\frac{x^{3}}{y} \div x^{2} y^{3}$
4. Solve each of these equations for x
a) $\frac{3 x+2}{5}+\frac{x-2}{4}=5$
b) $4 x^{2}-8 x=0$
c) $\frac{64}{x+3}-3=\frac{40}{x+3}$
d) $(2 x+3)(x+2)-2 x^{2}=55$
5. Rearrange each of the following formulae to make x the subject
a) $a=b x+c$
b) $\frac{a}{x-b}=\frac{c}{x+d}$
c) $\sqrt{x+a}=b$
6. a) The summit of Cairn Gorm is 1244 metres above sea level, whereas the summit of Ben Macdui is 1309 metres above sea level. From a map, the horizontal distance between these two mountains is 5500 metres. Standing at the top of Cairn Gorm, at what angle above the horizontal do I have to look to see the top of Ben Macdui?

b) A ptarmigan flies 1600 metres East from Cairn Gorm then 1200 metres North. At the same time a golden eagle flies directly from Cairn Gorm to the point the ptarmigan has reached. How far has the golden eagle flown?
c) A skier loses 200 metres altitude in skiing down a straight ski-run on Cairn Gorm of length 700 metres. What angle is this ski run to the horizontal?
d) On a different ski run, the slope is 19.5° to the horizontal. How far along the slope does a skier ski in descending 200 metres?
7. Matthew Matics has been designing a wine rack for his cellar. The bottles are to be stored in rows with each row directly above the row below. In his first design, he finds that he completes a certain number of rows but has 10 bottles of wine left over. So in a second design he makes the rows 5 bottles longer and discovers that with one fewer row, he is 5 bottles short of filling the rack. Supposing that his first design had x bottles in each row, and there were y rows, write down an equation on the basis of this information and show that it simplfies to $5 y-x=20$.

He tries a third design with 5 fewer bottles in each row than the first design and finds that with two rows more, he has 5 bottles left over. Write down a second equation using this information.

Solve these two equations to find x and y and then work out how many bottles of wine there are altogether in Matthew's cellar.
8. In arithmetic modulo 4, the answers to a calculation are given as the remainder when the answer is divided by 4 . So for example, $2+3=1(\bmod 4)$.
Copy and complete the following table for addition modulo 4 :-

+	0	1	2	3
0				
1				
2				
3			1	

Use the table to solve the equation $3+x=2(\bmod 4)$
Copy and complete the following table for multiplication modulo 4:-

\times	0	1	2	3
0				
1			2	
2				
3		3		

Use the tables to solve the following equations:-
a) $3 x=2(\bmod 4)$
b) $\quad x^{2}=1(\bmod 4)$
c) $2 x+3=1(\bmod 4)$

