

Rewarding Learning

General Certificate of Secondary Education 2012

Technology and Design

Unit 1: Technology and Design Core

[GTD11]

FRIDAY 25 MAY, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper. Answer all eleven questions.
On page 3 we have provided formulae for you to use with this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 90 .
Quality of written communication will be assessed in question 11.
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total Marks	

BLANK PAGE

Formulae for GCSE Technology and Design

You should use, where appropriate, the formulae given below when answering questions which include calculations.

1 Potential Difference $=$ current \times resistance $(V=I \times R)$

2 For potential divider

$$
V_{2}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{T}
$$

3 Series Resistors

$$
R_{T}=R_{1}+R_{2}+R_{3} \text { etc }
$$

4 Gear ratio of a simple gear train $=\frac{\text { number of teeth on driven gear }}{\text { number of teeth on driver gear }}$

1 Table 1 shows a number of different symbols. Using the first row as a guide, complete the table.

Table 1

Sketch of Symbol	Type of Symbol	Name of Symbol
Electronic	Bulb	
Electronic	Diode	

2 Fig. 1 shows a CNC milling machine with a piece of wood ready to be cut into shape. The cutting tool moves in various directions to cut out the required shape.

Fig. 1
(a) Outline one method of holding the wood in the CNC machine.
\qquad
\qquad
\qquad
(b) The three main cutting axes of the CNC milling machine are shown in Fig. 2. They are the X-axis, the Y-axis and the Z-axis. Complete the diagram by correctly labelling each axis shown.

Fig. 2
(c) How is a design generated for the process of computer aided manufacture (CAM)?
\qquad
\qquad

3 Fig. 3 shows a gear train used in a toy crane. The loads \mathbf{D} and \mathbf{E} are raised and lowered by cords wound on pulleys attached to the gears \mathbf{A} and \mathbf{C}. The gear \mathbf{B} can be rotated by a handle as shown.

Fig. 3
(i) The handle on B is rotated clockwise as shown.

Mark on Fig. 3:

- The direction of rotation of gears \mathbf{A} and \mathbf{C}.
- The direction of movement of loads \mathbf{D} and \mathbf{E}.
(ii) Wheel B is rotated at $30 \mathrm{rev} / \mathrm{min}$.

Determine the speed of wheels \mathbf{A} and \mathbf{C}.
\qquad
\qquad

4 Fig. 4 shows a cordless power drill.

Fig. 4
(i) Give one advantage and one disadvantage of a battery powered drill compared to one powered from the mains.

Advantage \qquad
Disadvantage \qquad
(ii) Suggest an application for each of the following features of the drill.

Slow speed start \qquad
\qquad
Reverse rotation \qquad
\qquad
(iii) Outline two other features a designer could consider in the design of a cordless power drill.

1. \qquad
\qquad
2. \qquad
\qquad

5 The electronic component represented in Fig. 5 is used in the circuit shown in Fig. 6.
(a) Name the component and identify each of the three connecting points labelled X, Y and Z .

Fig. 5
Name of Component [1]
Point X is called the [1]Point Y is called the[1]
Point Z is called the[1]
(b) Describe the operation of the above component when used in the circuit shown in Fig. 6.

Operation \qquad
\qquad
\qquad
\qquad
\qquad

Fig. 6

6 Fig. 7 shows a circuit for clamping wood before drilling.

Fig. 7
(i) Three pneumatic components in Fig. 7 are lettered. Complete

Table 2 by inserting the correct letter A, B or C to represent each component listed.

Table 2

Pneumatic Component	Letter
$3 / 2$ Valve Plunger Operated	
Single Acting Cylinder	
$3 / 2$ Valve Button Operated	

(ii) Explain how component \mathbf{C} is operated to clamp the wood.
\qquad
\qquad
\qquad
(iii) During clamping it was found that the wood was being damaged. Explain how this problem could be overcome.
\qquad
\qquad

7 Fig. 8 shows a CAD drawing of a menu holder for a cafe. The holder is to be made from 1.5 mm acrylic sheet.

Fig. 8
(a) (i) Which one of the two categories, thermosetting or thermoplastic, does acrylic belong to?
\qquad
(ii) Name another plastic, in the same category as acrylic, that is used in the school workshop.
\qquad
(b) (i) Outline two important features of the jig used to produce the holder.
\qquad
\qquad
(ii) Suggest a suitable material for the jig and give a reason for your choice.

Material:
\qquad

Reason:
\qquad .
ceverio

8 (a) Fig. 9 shows an electronic circuit for a school project. Name and identify the Input, Process and Output component symbols shown in Fig. 9 by completing Table 3.

Fig. 9

Table 3

INPUT	PROCESS	OUTPUT

(b) Explain the operation of the circuit shown in Fig. 9 ensuring that the purpose of each component in the circuit is considered.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

9 (a) Electronic circuits used within Technology and Design school projects are often computer controlled. Describe two functions of a flowchart used in a computer control system.
\qquad
\qquad
\qquad
\qquad
(b) Fig. 10 shows a drawing of a toy electronic Christmas tree which is to be computer controlled. The tree has seven numbered LEDs which will come on and off in a set sequence.

Fig. 10

Complete the flow chart in Fig. 11 to operate as follows:
LEDs 2, 4 and 6 to turn on and remain on for 10 seconds. LEDs 1, 3, 5 and 7 should turn on 3 seconds after LEDs 2, 4 and 6 turn on, and remain on for 7 seconds. All LEDs should then turn off and remain off for 4 seconds. The system is to run continuously unless a switch is pressed to stop the operation.

10 A basketball net used in a school gym is to be fitted to a wooden backboard as shown in Fig. 12.

Fig. 12
(a) Suggest a suitable material for the ring and bracket.

Give a reason for your choice.
Material
Reason
(b) State a method of joining the different parts shown in Fig. 12. Indicate whether the method is permanent or semi-permanent.
(i) Joining the ring to the bracket.

Method
Type \qquad

\qquad
\qquad
\qquad
(ii) Joining the bracket to the backboard.

Method \qquad
Type \qquad
(c) When in use it was found that the design as shown in Fig. 12 needed to be strengthened.
Explain how this could be achieved.
\qquad
\qquad
\qquad
\qquad

11 Pillar drills are used in school workshops. A 120 mm length of rectangular mild steel bar is to have three different sized holes drilled in it using a pillar drill. Describe how the drill and bar are prepared, set up and used to produce the three holes.
Include appropriate safety precautions for this process.
\qquad

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

