

General Certificate of Secondary Education 2012

Technology and Design

Unit 2: Systems and Control

Element 2: Mechanical and Pneumatic Control Systems

[GTD22]

TUESDAY 29 MAY, AFTERNOON

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper.

Answer **all** questions.

On page 3 we have provided formulae for you to use with this paper.

INFORMATION FOR CANDIDATES

The total mark for this paper is 80. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

_	_	_	
-	-	-	
			1
			÷.
			1
			÷
	_		1
-	-	-	

7566

For Examiner's use only		
Question Number	Marks	
1		
2		
Total Marks		

BLANK PAGE

Formulae for GCSE Technology and Design

You should use, where appropriate, the formulae given below when answering questions which include calculations.

1 Gear ratio of a simple gear train = $\frac{\text{number of teeth on driven gear}}{\text{number of teeth on driver gear}}$

For a compound gear train: Total Gear ratio = the product of the gear ratios of all the subsystems i.e. $GR_{T} = GR_{1} \times GR_{2} \times GR_{3} \dots$

2 Mechanical Advantage =
$$\frac{Load}{Effort}$$

- **3** Velocity Ratio = $\frac{\text{Distance moved by effort}}{\text{Distance moved by load}}$
- 4 Pneumatics Force = Pressure \times Area ($F = P \times A$)

1 (a) (i) Fig. 1 shows a pneumatic cylinder.	Marks Remark
Fig 1	
Fig 1	
Name the valve used to control the movement of this cylinder.	
[1]	
(ii) Give one application for this type of cylinder.	
[2]	
(iii) For the cylinder shown in Fig. 1	
Piston area $= 300 \text{mm}^2$ Air pressure $= 0.5 \text{N/mm}^2$ Force required to compress spring $= 50 \text{N}$	
Calculate the force the cylinder can exert.	
[4]	

(i) For valve A complete Table 1 below:

	Т	ab	le	1
--	---	----	----	---

Number of switching positions	
Number of ports	
Method of actuation	
Method for resetting	

(ii) Explain how a signal is produced at **X** when the start button is operated.

[4]

[Turn over

Examiner Only Marks Remark

www.StudentBounty.com

(c) Fig. 3 shows a pneumatic cylinder which is used to push heavy parts out of a holder one at a time.

Fig. 3

The pneumatic circuit used to control the cylinder is shown in **Fig. 4**.

- (i) State **two** factors which should be considered in selecting the cylinder.
- (ii) The circuit is to be modified to include the following features:
 - The speed of pushing the parts is to be controlled.
 - The process is to run continuously when the start button is pressed for an instant.

Modify the circuit in **Fig. 4** showing the additional valves required and any changes needed to existing valves. [9]

Examiner Only Marks Remark

(d) Fig. 5 shows a pneumatic circuit which is used on a packaging machine.

Fig. 5

[Turn over

2 (a) **Table 2** shows four different mechanisms and the input motion in each case.

Complete **Table 2** by inserting the correct name for each mechanism and its output motion.

Mechanism	Name	Output Motion
and sworth		

Table 2

[8]

Examiner Only Marks Remark

(i)	State the correct names for each of the cams labelled as A , B and C in Fig. 6 .		Examiner Marks R	Only Remark
	Α			
	Β			
	C	[3]		
(ii)	Select the appropriate cam to give each of the following motions to the follower:	s		
	A steady rise with a quick return.			
	A steady rise, a steady fall, followed by a dwell or rest.			
	A steady rise and a steady fall.			
		[3]		
(iii)	Which one of the cams can only operate in one direction of rotation?			
		[2]		

[Turn over

:) Fi	g. 7 shows a mechanism used in a winch for raising loads.		Examir Marks	ner Only Remark
	<image/> <image/>			
(i)	Name the mechanism shown.	[2]		
(ii) The mechanical advantage of the winch is 30. Calculate the effort required to raise a load of 2.4 kN.			
		[4]		
(ii	i) If the crank handle is turned through one revolution how far will the load rise? (Circumference of a circle = $\pi \times$ diameter)			
		[6]		

(iv) Calculate the velocity ratio of the winch.		Examin	er Only
		Marks	Remark
	[4]		
v) The winch in Fig. 7 is to be modified so that the velocity ratio is			
increased.	, 		
Suggest two ways in which this could be achieved.			
1			
2			
2			
	[6]		
vi) What other suitable mechanism could be used in the winch in			
place of the mechanism shown?			
	101		
	[2]		
HIS IS THE END OF THE QUESTION PAPER			
HIS IS THE END OF THE QUESTION FAFER			

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

www.StudentBounty.com