General Certificate of Secondary Education 2011

Technology and Design

Unit 2:

Systems and Control

Element 1: Electronic and
 Microelectronic Control Systems

[GTD21]
MONDAY 6 JUNE, MORNING

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all questions.
On page 3 we have provided formulae for you to use with this paper.
Questions for this paper begin on page 4.

INFORMATION FOR CANDIDATES

The total mark for this paper is 80 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

For Examiner's use only	
Question Number	Marks
1	
2	
Total Marks	

BLANK PAGE

Formulae for GCSE Technology and Design

You should use, where appropriate, the formulae given below when answering questions which include calculations.

1 Potential Difference $=$ current \times resistance $(V=I \times R)$

2 For potential divider

$$
V_{2}=\frac{R_{2}}{R_{1}+R_{2}} \times V_{T}
$$

3 Series Resistors $\quad R_{\mathrm{T}}=R_{1}+R_{2}+R_{3}$ etc.
Parallel Resistors $\quad \frac{1}{R_{\mathrm{T}}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$ or $R_{\mathrm{T}}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$

4 Time Constant T $=\mathrm{R} \times \mathrm{C}$

Element 1

Electronic and Microelectronic Control Systems

Answer all questions.

1 (a) Complete the following statements by inserting the missing word:
In an electronic circuit current is a flow of charge carried by
\qquad

The unit used to measure electrical current is
\qquad

In an electronic circuit the force which produces a flow of charge is known as \qquad

The unit used to measure electrical resistance is
\qquad
(b) Two resistors are shown in Fig. 1 and Fig. 2 below. Each resistor has four coloured bands, the fourth band is off-set from the other three bands.

Fig. 1 ($47 \mathrm{k} \Omega$)
Fig. $2(2.2 \mathrm{k} \Omega)$
(i) State the value of each resistor in $\Omega \mathrm{s}$.
$47 k \Omega=$ \qquad Ω
$2.2 \mathrm{k} \boldsymbol{\Omega}=$ \qquad Ω [2]
$2.2 \mathrm{k} \Omega$

(ii) Use the information below to identify the colours of the first three bands for the resistor in Fig. 1.
$0=$ Black $1=$ Brown $2=$ Red $3=$ Orange $4=$ Yellow
$5=$ Green $6=$ Blue $7=$ Violet $8=$ Grey $9=$ White

Band 1 \qquad Band 2 \qquad Band 3 \qquad [3]
(c) (i) If, in Fig. 1, the fourth band is coloured silver (10\%) and in Fig. 2
the fourth band is coloured gold (5\%), use notes and calculations to show the information that can be obtained for each resistor.

Fig. 1 notes \qquad
\qquad
Fig. 1 calculations

Fig. 2 notes \qquad

Fig. 2 calculations

- 1 calcula
(ii) If the two resistors illustrated in part (b) are used in a potential divider circuit as shown in Fig. 3 calculate the expected output at X.
Set out your calculations in the space shown.

Fig. 3

Calculations

Output at $\mathrm{X}=$ \qquad

Fig. 3
alations
(d) Fig. 4 shows a basic circuit layout that requires the components shown in Table 1 to be located in Fig. 4 as follows:

Table 1

Location	Component
A	SPST
B	LED
C	Variable Resistor
D	Polarised Capacitor

(i) Insert each component symbol in the correct place in Fig. 4.

Fig. 4

The circuit in Fig. 4 is required to operate a relay when a transistor is switched on.
(ii) Complete the circuit in Fig. 4 by including the relay and transistor.
Include any additional components that are needed for this circuit.
(iii) Outline the purpose of any additional components that you have used when completing (d) part (ii).
(iv) Describe the operation of the completed circuit stating the function of each component.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(v) Suggest one possible use for this circuit

Use \qquad
\qquad

2 A typical alarm system uses bits and bit patterns as the method of communication. For example, the plan in Fig. 5 shows doors and windows either closed or open. If a door or window is open it is represented as a " 1 " and if it is closed it is represented as a " 0 ". Each door or window is identified by a letter.

Fig. 5
(a) (i) Complete the bit pattern below to represent the position of the doors and windows in Fig. 5.

Window and Door Bit Pattern

A	B	C	D	E	F	G	H
	0	0	1	0	0		

(ii) Outline two features of a microcontroller (PIC).
\qquad
\qquad
\qquad
(iii) List two advantages of using a microcontroller compared to an integrated circuit such as a 555 timer.
\qquad
\qquad
\qquad
\qquad
(iv) List three applications, other than an alarm system that use a microcontroller.
\qquad
\qquad
\qquad
(b) To maintain climate control in a greenhouse a window is opened and closed using a motor operated by a microcontroller. The window opens when a temperature sensor rises to $25^{\circ} \mathrm{C}$ and closes when the temperature falls below $20^{\circ} \mathrm{C}$. Fig. 6 shows the cross-section of the window including two limit switches and temperature sensor.

Fig. 6

The PIC has 5 inputs (only 3 are used) and 8 outputs (only 4 are used).

A binary " 1 " indicates that a switch has been pressed or that the temperature sensor has risen to the set temperature.

The input connections are as shown in Table 2.

Table 2

PIC Inputs	(Not used)	Limit switch 2	Limit switch 1	(Not used)	Temperature sensor
BIT	4	3	2	1	0

The output connections are as shown in Table 3.
Table 3

PIC Outputs	(Not used)	(Not used)	Motor		(Not used)	(Not used)	LED	Buzzer
BIT	7	6	5	4	3	2	1	0
Motor clockwise	X	X	0	1	X	X	X	X
Motor anti- clockwise	X	X	1	0	X	X	X	X
Motor Off	X	X	0	0	X	X	X	X

Two bits are required to control the motor. An " X " means ignore.
A binary "I" switches the LED or buzzer on.

Construct a series of flowcharts to represent the overall operating routine as follows:
(i) Complete a flowchart and its relevant bit pattern in Fig. 7 to represent the OPEN macro as follows:

- Motor rotates clockwise to open the window
- The motor is turned off when limit switch 1 is activated
- The macro ends

					BIT PATTERN

Fig. 7
(ii) Complete a flowchart and its relevant bit pattern in Fig. 8 to represent the CLOSED macro as follows:

- Motor rotates anti-clockwise to close the door
- The motor is turned off when limit switch 2 is activated
- The macro ends

Fig. 8
(iii) The system is to be modified by introducing a LED and buzzer to warn that the window is about to open. Using the OPEN and CLOSED macros produced in parts (i) and (ii), complete a flowchart in Fig. 9 to operate the system as follows:

When the temperature sensor reaches a temperature of $25^{\circ} \mathrm{C}$ the LED and buzzer will come on for 3 seconds. The OPEN macro operates and then waits until the temperature drops to $20^{\circ} \mathrm{C}$ before the window closes using the CLOSED macro. The system will repeat.

Beside each input and output cell, indicate the relevant bit pattern.
No bit pattern is required for the macros.

	START			BIT PATTERN

Fig. 9

Permission to reproduce all copyright material has been applied for
In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

