GCSE MARKING SCHEME

JANUARY 2016

SCIENCE - Physics 2
 4473/01/02

INTRODUCTION

This marking scheme was used by WJEC for the 2016 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

Question Number					Accept	Neutral answer	Do not accept
FT HT	Sub-section		Mark	Answer			
2	(a)		1	18000 [N]			
	(b)	i	2	$\begin{aligned} & 1000 \times 6(1) \text { substitution } \\ & 6000[\mathrm{~J}](1) \end{aligned}$			
		ii	1	No work is done / 0 [J]	$1000 \times 0=0[\mathrm{~J}]$		$0 \times 6=0[\mathrm{~J}]$
		iii	1	Potential [energy] / gravitational potential [energy]			Gravity PE / GPE gravitational
		otal	5				

Question Number							
FT HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
3	(a)	i	2	$\begin{aligned} & \frac{5}{2.5}(1) \\ & =2[\Omega](1) \end{aligned}$			$2.5 \div 5=2[\Omega]$
		ii	2	$\begin{aligned} & 5 \times 2.5(1) \\ & =12.5[\mathrm{~W}](1) \end{aligned}$			
		iii	1	2.5 [A]			$5-2.5=2.5[\mathrm{~A}]$
	(b)		3	Increase, stay the same, decrease.			
	(c)		1	Same voltage / switch separately / others stay on if one 'blows'	Converse about series	Lower risk of lamps going out Reference to brightness	
	Total		9				

Question Number								
FT	HT	Sub-section		Mark	Answer	Accept	Neutral answer	Do not accept
4		(a)		1	Braking distance	Breaking distance		
		(b)	i	2	Thinking distance increases with speed (1) in proportion / uniformly / steadily (1)	As speed doubles thinking distance doubles (2) Speed increases with thinking distance (1)		Linear Constantly
			ii	1	Less steep straight line through origin ± 1 small square division			Any curves at all
		(c)	i	1	C			
			ii	1	A			
		Total		6				

ii	1	Helium nucleus / 2 protons + 2 neutrons			helium helium atom helium ion ${ }_{2}^{4} \mathrm{He}$
iii	2	Alpha particles have low penetrating power (1) so, cannot get through plastic or air to reach people (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	Alpha is highly ionising for the $1^{\text {st }}$ mark Alpha can't travel far through air $=2$ marks	Cannot get through the skin, paper	
Total	12				

Question Number						Neutral answer	Do not accept
FT HT	Sub-section		Mark	Answer	Accept		
3	(a)		2	56, 3			
	(b)		2	92 gives the number of protons / is the proton number (1) 235 gives the number of protons and neutrons / is the nucleon number / it has 143 neutrons (1) N.B. Reference to electrons loses 1 mark		92 is the atomic number. 235 is the mass number	
	(c)		1	[Boron steel / cadmium] control rods are dropped completely [into the reactor] Or Control rods can be lowered to absorb all the neutrons	Ball bearings or boron steel dust is dropped [into the reactor]		Any reference to moderator
	Total		5				

Question Number								
FT HT	Sub-section			Mark	Answer	Accept	Neutral answer	Do not accept
4	(a)	i		3	$\begin{aligned} & \text { KE }=m g h(\text { written or implied })(1) \\ & h=\frac{2940}{(60 \times 10)}(1-\text { manip or sub }) \\ & h=4.9[\mathrm{~m}](1-\mathrm{ans}) \end{aligned}$	$m g h=2940$ for the first mark. $h=\frac{2940}{600}$ for the first 2 marks Answer of 49 or $490=1$ mark		
		ii		3	Some energy has been lost [to air resistance] / heat is produced (1) So the diver would have had more than 2940 J of PE when on the diving board (1) So the diving board would have been higher than 4.9 [m] (ecf) (1) Alternative: The acceleration would have been smaller (1) So the acceleration would have been over a greater distance (1) So the diving board would have been higher than 4.9 [m] (ecf) (1) To award full marks the first two statements must be linked.			
	(b)	i		3	$\begin{aligned} & 1 / 2 m v^{2}=7.5(1) \\ & v^{2}=\frac{(2 \times 7.5)}{60}(1-\text { manip and sub }) \\ & v=0.5[\mathrm{~m} / \mathrm{s}](1) \end{aligned}$	$v^{2}=\frac{15}{60} \text { or } 0.25$ for the first 2 marks		

Question Number				Mark Answer				
FT HT	Sub-section					Accept Any mathematical function of a matching pair award the 1 $1^{\text {st }}$ mark	Neutral answer	Do not accept
5	(a)	i		2	Use of any pair of matching coordinates in the equation (1) $\begin{aligned} & \text { e.g. } 1.2=m \times 1.5 \\ & m=0.8[\mathrm{~kg}](1-\text { ans }) \end{aligned}$			
		ii	1	1	$\text { acceleration }=\frac{2.0}{0.8 \mathrm{ecf}}=2.50\left[\mathrm{~m} / \mathrm{s}^{2}\right]$			
			II	4	$\begin{aligned} & a=\frac{(v-u)}{t} \\ & 2.5\left(\text { egf } \quad \frac{(+0)}{0.6}\right. \\ & v=2.5 \times 0.6(1-\text { sub or manip }) \\ & v=1.5[\mathrm{~m} / \mathrm{s}](1-\text { ans }) \\ & \text { momentum }=0.8(\text { ecf }) \times 1.5(\text { ecf })(1-\text { sub }) \\ & =1.2[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](1-\text { ans }) \end{aligned}$ Alternative: $\Delta p=F \times t=2 \times 0.6=1.2[\mathrm{~kg} \mathrm{~m} / \mathrm{s}](4)$	Accept error carried forward on mass from (b)(i) and from acceleration taken from graph.		
			III	2	The momentum / it does not change (1) as there is no [resultant] force acting on the trolley (1) The $2^{\text {nd }}$ mark can only be awarded if it is linked to the $1^{\text {st }}$ mark.	momentum / it decreases (1) due to air resistance (1)		It changes as the slider slows down for the $1^{\text {st }}$ mark
	(b)			2	Straight line drawn from origin $\pm 1 / 2$ small square division and below the one given (1) And through point $(1.2,0.5) \pm 1 / 2$ small square division (1)			
	Total			11				

