Surname

Centre Number Candidate Number

0

Other Names

GCSE

4473/01

W16-4473-01

ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2 FOUNDATION TIER

A.M. THURSDAY, 14 January 2016

1 hour

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	6					
2.	5					
3.	9					
4.	6					
5.	10					
6.	12					
7.	12					
Total	60					

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

A list of equations is printed on page 2. In calculations you should show all your working.

You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 7(b).

Equations

power = voltage × current	P = VI
resistance = $\frac{\text{voltage}}{\text{current}}$	$R = \frac{V}{I}$
speed = $\frac{\text{distance}}{\text{time}}$	
acceleration [or deceleration] = $\frac{\text{change in velocity}}{\text{time}}$	$a = \frac{\Delta v}{t}$
acceleration = gradient of a velocity-time graph	
momentum = mass × velocity	p = mv
resultant force = mass × acceleration	F = ma
force = $\frac{\text{change in momentum}}{\text{time}}$	$F = \frac{\Delta p}{t}$
work = force × distance	W = Fd

SI multipliers

Prefix	Multiplier		
m	10 ⁻³	1 1000	
k	10 ³	1000	
М	10 ⁶	1000000	

BLANK PAGE

3

PLEASE DO NOT WRITE ON THIS PAGE

			Answer all questions.	Examiner only
1.	One	possil	ble fission reaction that takes place in a nuclear reactor is shown below.	
			${}^{235}_{92}\text{U} + {}^{1}_{0}\text{n} \longrightarrow {}^{90}_{36}\text{X} + {}^{143}_{56}\text{Y} + {}^{11}_{0}\text{n}$	
	(a)	Ansv onc	wer the following questions using numbers from the box. Each value may be used e, more than once, or not at all.	
			235 36 2 3 90 92	
		(i)	Complete the equation above. [1]	
		(ii)	Complete the following sentences. [3]	
			I. The number of protons in a uranium (U) nucleus is \dots	
			II. The number of particles in a nucleus of element X is	
			III. The number of protons in the nucleus of another isotope of uranium is	
	(b)	(i)	Name the part of a nuclear reactor that slows down neutrons. [1]	
		(11)	Name the part of a nuclear reactor that prevents an uncontrollable chain reaction. [1]	
				6

A for	klift tru	uck is used to lift heavy loads.	only
(a)	The mas	maximum mass that can be lifted by the truck is 1800kg. Calculate the weight of this s. (A 1kg mass has a weight of 10N.) [1]	6
		weight = N	
(b)	The	forklift truck uses a force of 1000N to lift a load through a vertical distance of 6m.	
	(i)	Select an equation from page 2 and use it to calculate the work done. [2]	
		work done =	J
	(ii)	State how much work, if any, the forklift truck does when the load is held stationary at 6 m. [1]	/
		work done =	J
	(iii)	Name the type of energy possessed by the load when it is stationary at a height of 6 m. [1]	f
			5

(b)	The student sets up the circuit again but without lamp 2 . This causes the current to increase. Choose words from the box to complete the following sentences. Each word or phrase may be used once , more than once , or not at all . [3]	Examiner only
	increases decreases stays the same	
	When lamp 2 is removed, the brightness of lamp 1	
(C)	Lamps in houses are connected in parallel instead of series. Give one reason why. [1]	
		9

© WJEC CBAC Ltd.

(4473-01)

Turn over.

Examiner only Use the equation: resultant force acceleration = mass to calculate the acceleration of car A. [3] acceleration = m/s² The same two horizontal forces act on car B. (C) 1000 N 2500N Car B has a mass twice as big as car A. (i) Write down the acceleration of car **B**. [1] (ii) State what happens to the size of the drag force as car **B** accelerates. [1] Explain why car **B** reaches a maximum speed. [2] (iii) 10

							TEvominor
A stud repres remove (undec	lent c ent ra ed. T ayed	loes an e adioactive These re atoms) a	experiment with dice e atoms, are thrown present the atoms are thrown again and t	to i toge whos the p	nvestigate radioactive dec ether onto the floor. Those se nuclei have decayed. process is repeated several t	ay . The dice, which that show a six are The remaining dice imes.	only
The st	udent	t starts w	ith 600 dice.				
(a)	(i)	Predict I	now many of the dice	wou	ld show a "six" on the first th	row. [1]	
	(ii)	State wh	ny the student cannot	prec	dict which dice will show a "s	six". [1	
(b)	The r	esults of	the experiment are sl	howr	n in the table below.		
	T	hrow	Number of sixes		Number of dice remaining		

Throw	Number of sixes	Number of dice remaining
0	0	600
1	95	505
2	85	420
3		350
4	60	290
5	50	240
6	40	200
7	30	170
8	25	145

(i) **Fill in the gap** in the table above.

6.

[1]

(4473-01)

(i)	State why Americium 211 is radioactive	[4]
(1)	State why Americium-241 is radioactive.	[1]
(ii)	What is an alpha particle?	[1]
(iii)	Explain why the use of Americium-241 in house smoke alarms when in normal does not present a significant health risk to people living in the houses.	use, [2]

BLANK PAGE

15

PLEASE DO NOT WRITE ON THIS PAGE

(D)	Describe fully the motion of the train for the time shown.Your answer should include:data from the graph;	[6 QWC]
	 appropriate calculations. (Calculations of distance should not be given in your answer.) 	
	TURN OVER FOR THE REST OF THE QUESTION	

		18	
(C)	(i)	Use the equation: distance = speed \times time	Examiner only
		to calculate the distance travelled by the train in the first 10s of the journey. [1]	
		distance = m	
	(ii)	Between 10s and 30s, the train travels 100m. Use an equation from page 2 to calculate the mean speed of the train between 0s and 60s. [3]	
		mean speed = m/s	
			12
		END OF PAPER	

BLANK PAGE

19

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examiner only
		1
	······	
		1

