Surname

Centre Number Candidate Number

Other Names

GCSE

4462/02

W16-4462-02

SCIENCE A/CHEMISTRY

CHEMISTRY 1 HIGHER TIER

P.M. TUESDAY, 12 January 2016

1 hour

	For Ex	For Examiner's use onl				
	Question	Maximum Mark	Mark Awarded			
	1.	7				
	2.	11				
ADDITIONAL MATERIALS	3.	6				
	4.	6				
In addition to this paper you will need a calculator and a ruler.	5.	7				
	6.	5				
INSTRUCTIONS TO CANDIDATES	7.	12				
Use black ink or black ball-point pen.	8.	6				
Do not use gel pen or correction fluid. Write your name, centre number and candidate	Total	60				

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the additional page(s) at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) in your answers to questions **3** and **8**.

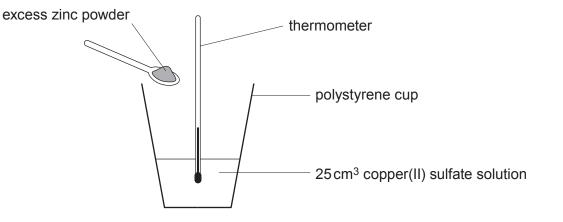
The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

SM*(W16-4462-02)

	Answer all questions.	Exa o									
(a)	The following diagram shows an outline of part of the Periodic Table of Elements shown on the back page of this paper.										
	Place letters X , Y , and Z in the correct spaces on the diagram to show the following.										
	X – an element in Group 3										
	Y – the element with the smallest atomic numberZ – the element in Period 2 and Group 1 [3]										
(b)	Mendeleev published the first accepted 'periodic table' in 1869. Give one similarity and one difference between his table and the Periodic Table we use today. [2]										
•••••											
(C)	Give the formulae of the following compounds.										
	calcium oxide										
	magnesium hydroxide[2]										

BLANK PAGE

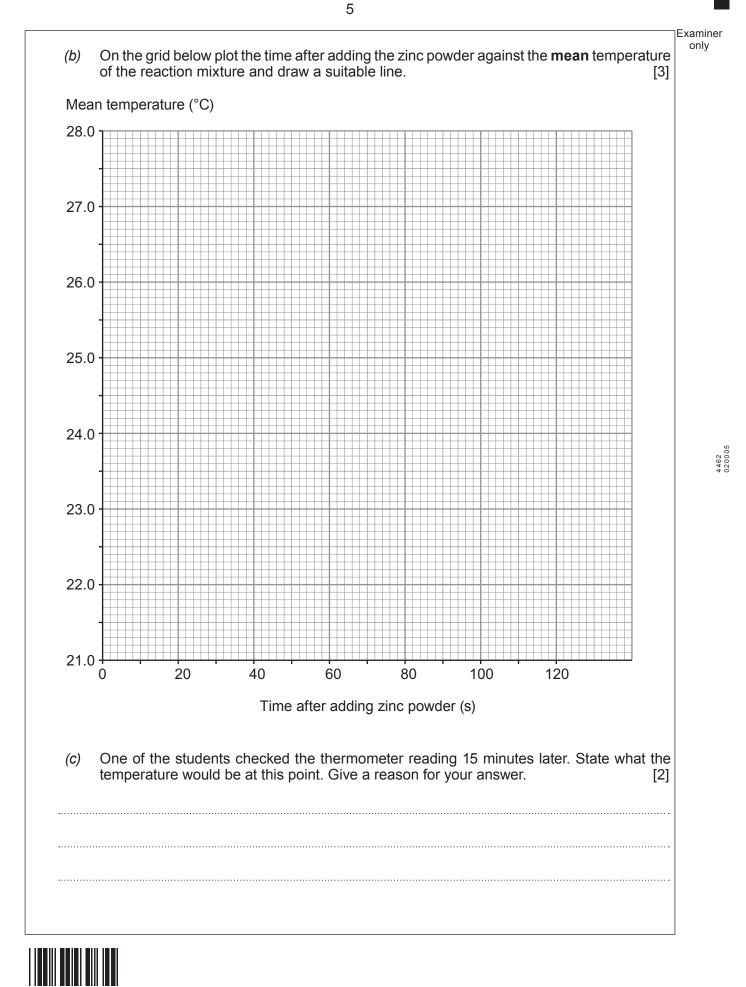
3


PLEASE DO NOT WRITE ON THIS PAGE

A group of students used the following apparatus to carry out a displacement reaction between zinc powder and copper(II) sulfate solution.

4

Excess zinc was added to 25 cm^3 of the copper(II) sulfate solution at room temperature. The temperature was recorded every 20 s. The results are shown in the table below.


Time after adding the zinc powder to the copper(II) sulfate		ature of the reaction mixture (°C)				
solution (s)	Result 1	Result 2	Mean			
0	22.0	22.0	22.0			
20	22.8	23.0	22.9			
40	24.8	25.2	25.0			
60	27.3		27.1			
80	26.6	26.6	26.6			
100	25.7	25.7 25.9				
120	24.8	24.4	24.6			

(a) From the data in the table, calculate the missing result for 60s that must have been used in working out the mean value. [1]

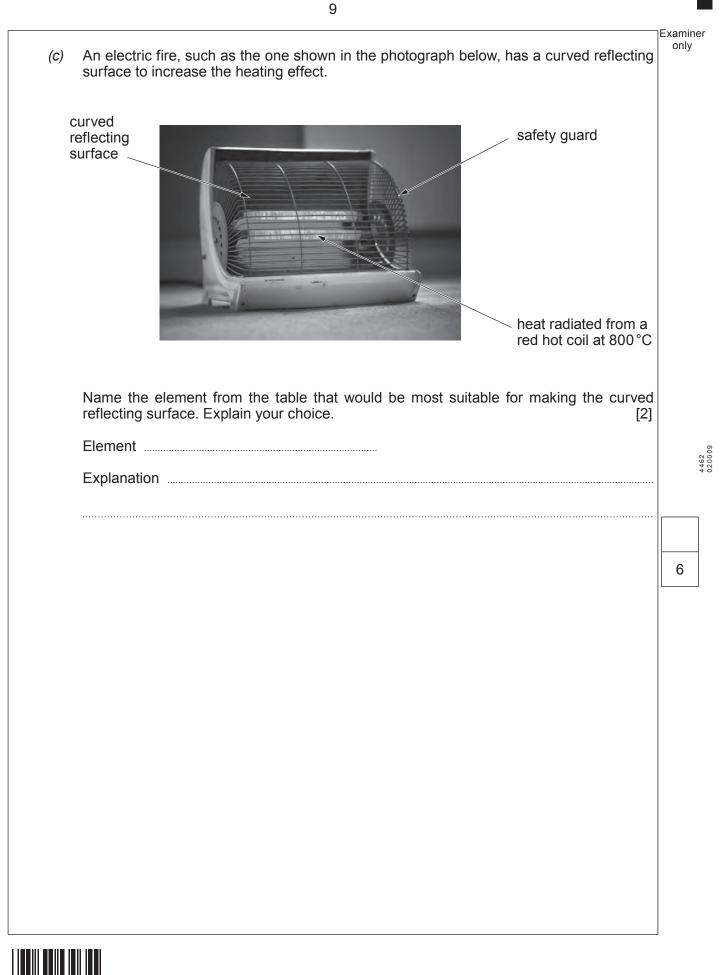
Temperature =

Examiner Explain why the results recorded in the table can be described as *repeatable*. (d) [2] The maximum temperature recorded is not as high as expected. Give the main reason for (e) this and suggest one way that this effect could be reduced. [2] (f) Balance the following symbol equation that represents the displacement reaction that takes place between zinc and silver nitrate solution. [1] $AgNO_3 \longrightarrow Zn(NO_3)_2 +$ Zn + Ag

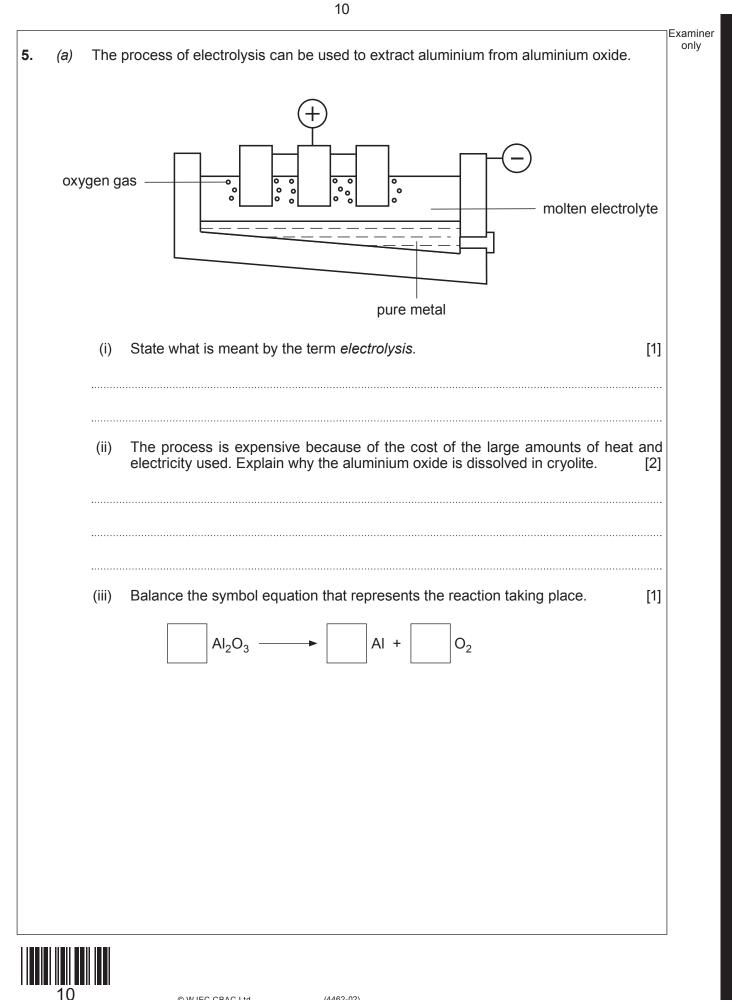
11

only

Briefly outline the theory of plate boundary.		[• • • • •]



Examiner only


The table below shows some properties of eight elements. 4. Melting Boiling Metal/ Appearance at room Element point point Malleable Ductile non-metal temperature (20°C) (°C) (°C) -7 bromine non-metal 59 brown liquid no no carbon non-metal 3500 4800 no no black solid 114 184 iodine non-metal no no shiny grey solid chromium 1907 2671 shiny grey solid metal yes yes lead metal 327 1740 shiny grey solid yes yes lithium 180 1340 shiny grey solid metal yes yes 63 760 shiny grey solid potassium metal yes yes non-metal -218 -183 colourless gas oxygen no no Use **only** the information in the table to answer the following questions. Explain which element is a liquid at 100 °C. [2] (a) (b) Carbon and iodine are non-metals but each shows some properties associated with metals. Give **one** property of each element that is unusual for a non-metal. [2] Carbon

lodine

(b) Iron is extracted from its ore inside the blast furnace.

The table below lists the raw materials needed for the extraction of one tonne of iron. The cost of one tonne of each raw material is also shown.

Raw material needed to extract iron from its ore	Number of tonnes needed to produce one tonne of iron	Cost per tonne of the raw material (£)
iron ore	2	40
coke	1	152
limestone	0.5	90
hot air	4	2

The cost of recycling one tonne of iron is only 10% of the cost of extracting one tonne of the metal from its ore.

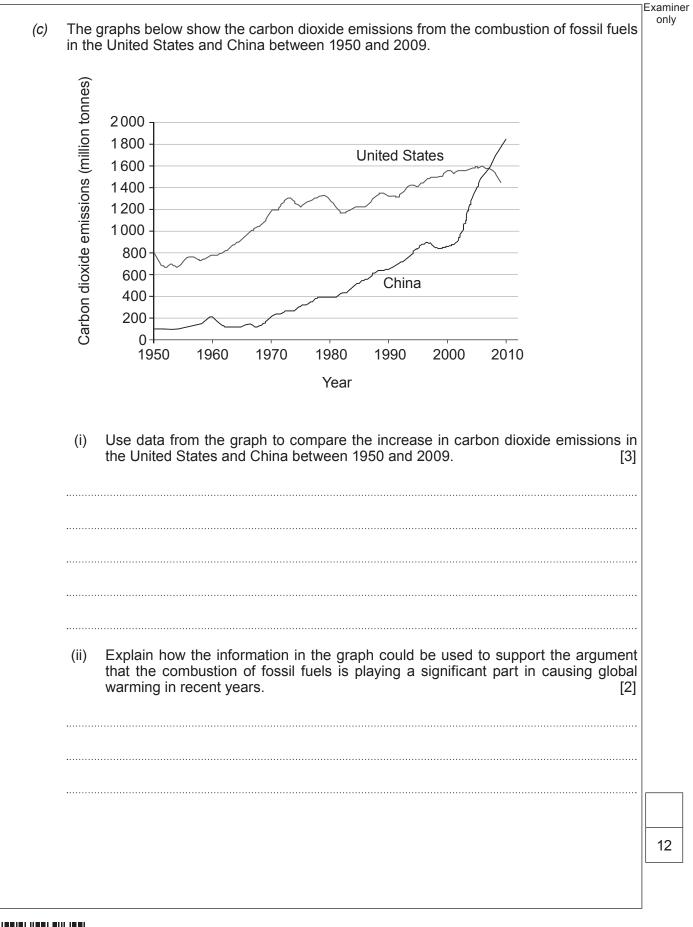
Use the information in the table to calculate how much money would be saved per tonne of recycled iron. [3]

Saving = £ per tonne

7

Examiner only

	DMFT – decayed, missing and filled	teeth
Country	Average number of DMFT in sample tested	Percentage of sample with fluoridated water (%)
Denmark	0.7	0
England	0.7	11
Australia	1.0	80
United States	1.2	64
Spain	1.3	11
New Zealand	1.4	61
Norway	1.7	0
Japan	1.7	0
supplies reduces	the average number of DMFT in chile	ldren. [3]


BLANK PAGE

13

PLEASE DO NOT WRITE ON THIS PAGE

(a)	State and explain how the levels of these two gases have changed over geological time [4
(b)	Explain how the processes of respiration and photosynthesis affect the atmosphere. [3]

Turn over.

can be identified.	it using indicators, sodium carbonate, sodium c	
Use the names of	iny products formed and relevant equations to	support your answer. [6 QWC]
	END OF PAPER	

BLANK PAGE

17

PLEASE DO NOT WRITE ON THIS PAGE

on	Additional page, if required. Write the question number(s) in the left-hand margin.	Exam onl
••••••		
••••••		
••••••		
••••••		

© WJEC CBAC Ltd.

POSITIV	EIONS	NEGATI	VE IONS
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH4 ⁺	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI-
Calcium	Ca ²⁺	Fluoride	F⁻
Copper(II)	Cu ²⁺	Hydroxide	OH [−]
Hydrogen	H⁺	lodide	I_
lron(ll)	Fe ²⁺	Nitrate	NO ₃ ⁻
Iron(III)	Fe ³⁺	Oxide	O ²⁻
Lithium	Li ⁺	Sulfate	SO4 ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag ⁺		
Sodium	Na ⁺		
Zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

PERIODIC TABLE OF ELEMENTS

									20							
	0	² ⁴ He	Helium	²⁰ Ne	Neon	⁴⁰ ₁₈ Ar	Argon	⁸⁴ ₃₆ Kr	Krypton	¹³¹ Xe	Xenon	²²² Rn	Radon			
	~			61 9 9	Fluorine	³⁵ / ₁₇ CI	Chlorine	⁸⁰ Br	Bromine	127 53	lodine	²¹⁰ ₈₅ At	Astatine			
	9			16 O 8	Oxygen	³² ¹⁶ S	Sulfur	⁷⁹ ₃₄ Se	Selenium	¹²⁸ Te	Tellurium	²¹⁰ PO 84	Polonium			
	Ŋ			14 N	Nitrogen	³¹ P	Phosphorus	75 AS	Arsenic	¹²² Sb	Antimony	²⁰⁹ Bi	Bismuth			
	4			6 ¹² C	Carbon	²⁸ Si	Silicon	73 32 Ge	Germanium	¹¹⁹ Sn	Tin	²⁰⁷ Pb	Lead			
ST	က			5 ¹ 5	Boron	²⁷ ₁₃ AI	Aluminium	70 Ga	Gallium	¹¹⁵ In	Indium	204 TI 81	Thallium			
						1		⁶⁵ Zn ³⁰ Zn	Zinc	¹¹² Cd	Cadmium	²⁰¹ Hg	Mercury			
								64 Cu 29 Cu	Copper	¹⁰⁸ Ag	Silver	¹⁹⁷ Au	Gold			
Ц О Ц								59 Ni 28	Nickel	¹⁰⁶ Pd	Palladium	¹⁹⁵ Pt	Platinum			
ABLE		H T	Hydrogen					⁵⁹ Co	Cobalt	¹⁰³ Rh	Rhodium	192 Ir 77	Iridium			
	roup			1				56 Fe	Iron	¹⁰¹ Ru	Ruthenium	¹⁹⁰ OS	Osmium			
PERIODIC TABLE OF ELEMENTS	Gro							⁵⁵ Mn	Manganese	⁹⁹ TC	Technetium	¹⁸⁶ Re	Rhenium			
БП								52 Cr 24 Cr	Chromium	⁹⁶ Mo	Molybdenum	¹⁸⁴ W 74	Tungsten		Key:	•
								51 V 23	Vanadium	⁹³ Nb	Niobium	¹⁸¹ Ta	Tantalum			
								⁴⁸ Ti 22	Titanium	⁹¹ ₄₀ Zr	Zirconium	¹⁷⁹ Hf	Hafnium			
								⁴⁵ Sc ²¹	Scandium	⁸⁹ Y	Yttrium	¹³⁹ La	Lanthanum	²²⁷ ₈₉ Ac	Actinium	
	2			⁹ Be	Beryllium	²⁴ Mg	Magnesium	⁴⁰ Ca	Calcium	⁸⁸ 38 Sr	Strontium	¹³⁷ Ba	Barium	²²⁶ Ra	Radium	
, , , , , , , , , , , , , , , , , , , ,				7 Li	Lithium	²³ Na	Sodium	³⁹ K	Potassium	⁸⁶ Rb ³⁷ Rb	Rubidium	¹³³ CS	Caesium	²²³ Fr ⁸⁷	Francium	
20		© WJE	C CBAC	Ltd.		(446	62-02)									

20

Element Symbol ↓ × Name N ∢ Atomic number Mass number