Surname
Other Names

Centre Number	Candidate Number
0	

GCSE
4473/01

|||l|l|
 S16-4473-01

ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2

FOUNDATION TIER

P.M. WEDNESDAY, 25 May 2016

1 hour

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	5	
2.	8	
3.	7	
4.	7	
5.	9	
6.	11	
7.	13	
Total	60	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
A list of equations is printed on page 2. In calculations you should show all your working.
You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 7(a).

Equations

power $=$ voltage \times current	$P=V I$
current $=\frac{\text { voltage }}{\text { resistance }}$	$I=\frac{V}{R}$
speed $=\frac{\text { distance }}{\text { time }}$	$a=\frac{\Delta v}{t}$
acceleration [or deceleration] $=\frac{\text { change in velocity }}{\text { time }}$	$p=m v$
acceleration $=$ gradient of a velocity-time graph	$F=m a$
momentum $=$ mass \times velocity	$F=\frac{\Delta p}{t}$
resultant force $=$ mass \times acceleration	$W=F d$
force $=\frac{\text { change in momentum }}{\text { time }}$	
work $=$ force \times distance	

SI multipliers

Prefix	Multiplier	
m	10^{-3}	$\frac{1}{1000}$
k	10^{3}	1000
M	10^{6}	1000000

Answer all questions.

1. (a) The list on the left gives statements about the forces acting on a skydiver falling through

Air resistance is greater than the weight.

The air resistance is equal to the weight.

The weight is greater than the air resistance.

The skydiver moves upwards.

The skydiver speeds up.

The skydiver falls at constant speed.

The skydiver stops.

2. Part of the journey of a cyclist is shown on the velocity-time graph below.

(a) (i) Use the equation:

$$
\text { acceleration }=\frac{\text { change in velocity }}{\text { time }}
$$

to calculate the acceleration of the cyclist between \mathbf{A} and \mathbf{B}.
\qquad
(ii) Explain how the acceleration between \mathbf{B} and \mathbf{C} is different from \mathbf{A} to \mathbf{B}.

Examiner
(iii) Use the equation:
distance $=$ speed \times time
to calculate the distance the cyclist travels between \mathbf{C} and \mathbf{D}.
distance = \qquad
(b) After 40 s the cyclist decelerates steadily to rest in 15 s . Use this information to complete the graph.
3. The following equation shows a nuclear reaction.

(a) The reactants have to move very quickly for this reaction to take place and controlling this reaction on Earth is difficult. Complete the following sentences.
(i) The reactants are made to collide with high energies by making the gas
(ii) The problem this causes is \qquad
(b) Underline the correct word in the brackets in each sentence below.
(i) The reactants are isotopes of (hydrogen / helium / neutrons).
(ii) The reactants have the same numbers of (neutrons / protons / nucleons).
(iii) This reaction is an example of a (fusion / fission / chain) reaction.
(c) Give two reasons why this reaction is likely to be important in the future.
I. \qquad
II.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4. The graph below shows the radioactive decay in counts per minute (cpm) of a sample of carbon-14.

(a) (i) Use information from the graph to answer the following questions.
(I) State the activity after 4000 years.
activity $=$ \qquad cpm
(II) State the time taken for the activity to fall from 400 cpm to 100 cpm .
\qquad
(III) State the half-life of carbon-14.
half-life $=$ \qquad years
(ii) State the time it would have taken for the activity to have fallen from 800 cpm to 400 cpm .

Stat
\square
\qquad
(b) The nuclear symbol for carbon-14 is ${ }_{6}^{14} \mathrm{C}$. Complete the following table for the nucleus of carbon-14.

Nucleon number	
Number of protons in its nucleus	
Number of neutrons in its nucleus	

5. The diagram shows a winch that is used to pull a boat 44 m up a ramp.

(a) (i) There is a friction force of 50 N acting against the boat as it is being pulled up the ramp. Use the equation:

$$
\text { work }=\text { force } \times \text { distance }
$$

to calculate the work done against friction.
\qquad
(ii) The boat has gained 3200 J of potential energy when it is at the top of the ramp. Calculate the total work done by the winch to move the boat up the ramp.
total work done $=$ \qquad
(iii) Later, the boat is released from the top of the ramp and it rolls down to the sea. Some of its 3200 J of potential energy is used up as work against friction. Use your answer to (a)(i) to calculate the energy it has left when it reaches the sea.
energy = \qquad
(b) The boat of mass 80 kg hits the sea at a speed of $5 \mathrm{~m} / \mathrm{s}$ and slows down to $1 \mathrm{~m} / \mathrm{s}$.
(i) Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the change in momentum of the boat.
\qquad $\mathrm{kg} \mathrm{m} / \mathrm{s}$
(ii) Use the equation:

$$
\text { force }=\frac{\text { change in momentum }}{\text { time }}
$$

to calculate the force applied by the sea to slow the boat in 2 s .
[2]
force $=$ \qquad
(iii) State the value of the force applied by the boat on the sea as it slows down.
\qquad
6. The table shows the typical thinking and braking distances for a car at different speeds.

Speed in miles per hour (mph)	Thinking distance (m)	Braking distance (m)
20	6	6
30	9	14
40	12	24
50	18	38
60	21	56
70		75

(a) (i) Complete the table.
(ii) Calculate the overall stopping distance at 40 mph .
stopping distance $=$
(iii) Explain why the thinking distance changes as the speed increases.
\qquad
\qquad
\qquad
(b) The data in the table applies to an alert driver on a dry day. Describe how the data would compare if the driver is tired.

To improve motorway safety, some motorways have chevron markers. The gap between one chevron marker and the next is 40 m . Drivers are instructed to keep at least two chevron gaps away from the car in front.

(c) Calculate how long it will take to travel 2 chevron gaps at the motorway speed limit of $31 \mathrm{~m} / \mathrm{s}(70 \mathrm{mph})$ using the equation:

$$
\text { time }=\frac{\text { distance }}{\text { speed }}
$$

time =
\qquad
(d) Explain why the data in the table opposite shows the two chevron rule may not keep motorists safe even if they are travelling in a car at the motorway speed limit.
\qquad
\qquad
\qquad
7. The diagram shows a lamp connected to a battery and a variable resistor.

(a) Describe how the circuit can be used to obtain a series of measurements to show how the current through the lamp varies with the voltage across it.
In your answer you should:

- include the names of the measuring instruments needed;
- add these instruments to the circuit diagram above;
- describe how a series of measurements is obtained.
(b) The current through the lamp was measured for voltages up to 12 V . A graph of the results is shown on the grid below.

(i) Use the graph to find the current through the lamp when a voltage of 6 V is applied to it.
current $=$
A
(ii) Use the equation:

$$
\text { resistance }=\frac{\text { voltage }}{\text { current }}
$$

to calculate the resistance of the lamp at 6 V .
\qquad
(iii) Use an equation from page 2 to calculate the power produced by the lamp at 6 V .
(iv) The lamp is replaced by a resistor which remains at constant temperature. At 10 V the resistor and lamp have the same resistance. Add a line to the graph to show how the current through the resistor varies with voltage.

END OF PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

