Surname

Centre Number

Other Names

GCSE

4472/02

S16-4472-02

ADDITIONAL SCIENCE/CHEMISTRY

CHEMISTRY 2 HIGHER TIER

A.M. THURSDAY, 19 May 2016

1 hour

For Examiner's use only						
Question	Maximum Mark	Mark Awarded				
1.	6					
2.	12					
3.	6					
4.	6					
5.	8					
6.	7					
7.	9					
8.	6					
Total	60					

ADDITIONAL MATERIALS

In addition to this paper you will need a calculator and a ruler.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

Assessment will take into account the quality of written communication (QWC) used in your answers to questions **3** and **8**.

The Periodic Table is printed on the back cover of the examination paper and the formulae for some common ions on the inside of the back cover.

Examiner only

6

1. The following diagrams show the electronic structures of five different elements, A-E. С Α В D Ε State which elements, **A**–**E**, are found in Period 2 of the Periodic Table. (a) Give a reason for your choice. [2] State which element, A–E, has an atomic number of 15. Give a reason for your answer. (b) [1] ²⁷AI Aluminium can be represented as (C) State what this tells you about the structure of its atoms. [3]

2

Answer all questions.

Turn over.

- Examiner only
- 3. Describe what is meant by a *smart material*. Use thermochromic and photochromic materials to support your answer, giving everyday uses of each.

 [6 QWC]

(c) Approximately 3.3g of carbon dioxide gas dissolves in 1 dm³ of fresh water at 0 °C. Estimate how many times more soluble carbon dioxide is than oxygen at this temperature. Show your working.

1g = 1000 mg

Carbon dioxide is approximately times more soluble than oxygen.

6

Examiner

4472 020007

Turn over.

only The following graphs show the volume of hydrogen produced over time during the reaction 5. between magnesium and hydrochloric acid of two different concentrations. All other factors were kept constant. 60 mol/dm³ acid 50 40 Volume of hydrogen (cm³) 0.5 mol/dm³ acid 30 20 10 0 20 . 30 40 50 60 70 . 80 100 10 90 110 120 130 0 Time (s) State what conclusion can be drawn from the graph and use your understanding of (a) particle theory to explain that conclusion. [4]

8

Examiner

(b) Another method of studying this reaction is to use a balance to record the change in mass over time. The data can be recorded directly on a computer.

$$A_{\rm r}({\rm H}) = 1$$
 $A_{\rm r}({\rm C}) = 12$ $A_{\rm r}({\rm O}) = 16$

(4472-02)

8

Examiner

6.

- Examiner only
- Alkenes such as ethene are reactive hydrocarbons. They can be recognised by their (a) reaction with bromine, Br₂. State what you would expect to see when bromine water is added to an alkene. (i) Give the reason this happens. [2] Complete the equation by giving the structure of the product formed. (ii) [1] Br_2 + Monomers can undergo polymerisation to form polymers. One example is PVC. (b) Complete the equation for the formation of PVC. (i) [1] n c = c
 - PVC is a thermoplastic. Describe the effect of heat on thermoplastics and explain in terms of their **structure** why they behave in this way. [3]

BLANK PAGE

An experiment was carried out to determine the trend in reactivity of the halogens. The following table shows the results obtained when solutions of halogens were added to different halide solutions.

		Halide solution		
		potassium chloride	potassium bromide	potassium iodide
Halogen added	bromine	no reaction	no reaction	turns brown
	chlorine	no reaction	turns yellow orange	turns brown
	iodine	no reaction	no reaction	no reaction

(i) Use the results in the table to give the order of reactivity of the halogens. Explain your answer.

[3]

+

(ii) Write the balanced **symbol** equation for the reaction that takes place between chlorine and potassium iodide. [3]

▶

7.

(a)

+

Examiner

(b) When silver nitrate solution is added to a solution of potassium bromide, a creamy precipitate of silver bromide is formed. The following reaction takes place.

 $AgNO_3(aq) + KBr(aq) \longrightarrow AgBr(s) + KNO_3(aq)$

Calculate the mass of silver nitrate needed to form 47 g of silver bromide.

 $A_r(Ag) = 108$ $A_r(N) = 14$ $A_r(O) = 16$ $A_r(Br) = 80$

Mass of silver nitrate = g

9

Examiner

[3]

8.	Using water and carbon dioxide as examples, explain what is meant by covalent bonding and why some molecules contain double bonds. You may use diagrams as part of your answer. [6 QWC]	Examiner only

END OF PAPER

POSITIVE IONS		NEGATIVE IONS	
Name	Formula	Name	Formula
Aluminium	Al ³⁺	Bromide	Br ⁻
Ammonium	NH4 ⁺	Carbonate	CO ₃ ²⁻
Barium	Ba ²⁺	Chloride	CI
Calcium	Ca ²⁺	Fluoride	F⁻
Copper(II)	Cu ²⁺	Hydroxide	OH⁻
Hydrogen	H⁺	lodide	F
Iron(II)	Fe ²⁺	Nitrate	NO ₃ ⁻
Iron(III)	Fe ³⁺	Oxide	0 ²⁻
Lithium	Li ⁺	Sulfate	SO4 ²⁻
Magnesium	Mg ²⁺		
Nickel	Ni ²⁺		
Potassium	K ⁺		
Silver	Ag ⁺		
Sodium	Na ⁺		
Zinc	Zn ²⁺		

FORMULAE FOR SOME COMMON IONS

PERIODIC TABLE OF ELEMENTS

Helium ²²²₈₆ Rn ²⁰ Ne Krypton ¹³¹Xe Xenon Radon ⁴₂He Argon Neon $^{40}_{18}Ar$ $^{84}_{36}\rm Kr$ 0 Fluorine Bromine Chlorine lodine Astatine $^{210}_{85}{\rm At}$ 19 19 ³⁵CI ⁸⁰ Br 127 53 Polonium Selenium Tellurium ²¹⁰ PO Oxygen ¹²⁸ Te Sulfur ⁷⁹ Se 16 8 0 ³² ¹⁶ ဖ Arsenic Nitrogen Antimony Bismuth Phosphorus 75 AS ¹²² Sb ²⁰⁹ Bi ¹⁴ ∠ ³¹ P S Carbon Germanium Silicon 73 Ge ²⁰⁷ Pb ¹¹⁹ Sn ²⁸ Si Lead ¹² ⁶C Tin 4 Thallium Aluminium Gallium Indium Boron 70 Ga ¹¹⁵ In 49 ²⁰⁴ TI 81 ²⁷₁₃AI ш က 5 7 ²⁰¹ Hg Cadmium Mercury ¹¹² Cd 65 Zn 30 Zn Zinc Copper ¹⁰⁸ Ag ¹⁹⁷ Au 64 Cu 29 Cu Silver Gold Palladium Platinum Nickel ¹⁰⁶ Pd $^{195}_{78}$ Pt ⁵⁹ Ni ²⁸ Ni Hydrogen Cobalt Rhodium ¹⁰³ Rh Iridium ⁵⁹₂₇Co ¹⁹² |r Ť Ruthenium ¹⁹⁰ OS Osmium 101 Ru $^{56}_{26}$ Fe lron Group Rhenium Technetium Manganese $^{186}_{75} {\rm Re}$ 55 Mn 25 Mn $^{99}_{43}\text{Tc}$ Molybdenum Tungsten Chromium $^{96}_{42}\text{Mo}$ ¹⁸⁴ W 52 Cr 24 Cr Niobium Vanadium Tantalum $^{181}_{73}$ Ta ⁹³ Nb 51 V 23 Titanium Zirconium Hafnium ¹⁷⁹ Hf ⁴⁸ Ti $^{91}_{40}Zr$ Scandium Lanthanum Yttrium ¹³⁹ La ²²⁷₈₉Ac ⁴⁵₂₁Sc ⁸⁹ Y Calcium Beryllium Magnesium Barium ²²⁶ Ra ²⁴₁₂Mg Strontium ¹³⁷ Ba $^{40}_{20}$ Ca $^9_{4}$ Be ⁸⁸ 38 **S** 2 Potassium Rubidium Caesium Sodium ¹³³ CS Lithium ²³Na ⁸⁶₃₇Rb $^{223}_{87}$ Fr ³⁹ K ⁷∟i _

Mass number A A X ← Element Symbol Atomic number A Name

Key:

Actinium

Radium

Francium

© WJEC CBAC Ltd.