| Surname |
| :--- |
| Other Names |


| Centre <br> Number | Candidate <br> Number |
| :--- | :---: |
| 0 |  |

GCSE
4473/01

## ||||||||||||||||||||||||||||||||||||||||||||l|l| <br> S15-4473-01

## ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2
FOUNDATION TIER

## P.M. WEDNESDAY, 20 May 2015

1 hour

## ADDITIONAL MATERIALS

In addition to this paper you may require a calculator and a ruler.

| For Examiner's use only |  |  |
| :---: | :---: | :---: |
| Question | Maximum <br> Mark | Mark <br> Awarded |
| 1. | 10 |  |
| 2. | 6 |  |
| 3. | 11 |  |
| 4. | 9 |  |
| 5. | 11 |  |
| 6. | 7 |  |
| 7. | 6 |  |
| Total | 60 |  |

## INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.
If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

## INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.
A list of equations is printed on page 2. In calculations you should show all your working.
You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 7.

## Equations

| power $=$ voltage $\times$ current | $P=V I$ |
| :---: | :---: |
| current $=\frac{\text { voltage }}{\text { resistance }}$ | $I=\frac{V}{R}$ |
| speed $=\frac{\text { distance }}{\text { time }}$ | $a=\frac{\Delta v}{t}$ |
| acceleration [or deceleration] $=\frac{\text { change in velocity }}{\text { time }}$ | $p=m v$ |
| acceleration $=$ gradient of a velocity-time graph | $F=m a$ |
| momentum $=$ mass $\times$ velocity | $F=\frac{\Delta p}{t}$ |
| resultant force $=$ mass $\times$ acceleration | $W=F d$ |
| force $=\frac{\text { change in momentum }}{\text { time }}$ |  |
| work $=$ force $\times$ distance |  |

## SI multipliers

| Prefix | Multiplier |  |
| :---: | :---: | :---: |
| m | $10^{-3}$ | $\frac{1}{1000}$ |
| k | $10^{3}$ | 1000 |
| M | $10^{6}$ | 1000000 |

## BLANK PAGE

## PLEASE DO NOT WRITE ON THIS PAGE


(ii) Use the graph and the equation:
acceleration $=\frac{\text { change in velocity }}{\text { time }}$

Examiner
to calculate the acceleration during the first 10 s .
acceleration $=$ $\qquad$ $\mathrm{m} / \mathrm{s}^{2}$
(c) (i) The car and driver have a mass of 1200 kg .

Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the momentum of the car and driver at 50 s .
momentum =
$\qquad$
(ii) The car stops at 80 s .

Use the equation:

$$
\text { force }=\frac{\text { change in momentum }}{\text { time }}
$$

to calculate the force acting on the car whilst it decelerates.

## force $=$

$\qquad$ N
2. (a) Put ticks $(\checkmark)$ in the boxes that correctly give the meaning of the half-life of a radioactive
The time taken for the radioactivity to halve.
$\square$
The time taken for the atoms to split in half.
$\square$
The time taken for the number of undecayed particles to halve.

The time taken for half of the alpha particles to decay.

(b) The following graph shows the decay curve for a radioactive substance.
Count rate (counts/min)

(i) Use information from the graph on page 6 to write down the count rate after 100 days.
count rate $=$ $\qquad$ counts/min
(ii) Write down the half-life of this radioactive substance.
half-life $=$ $\qquad$ days
(iii) Write down the time it would take for the count rate to fall from 50 to 25 counts/min.
time =
days
(iv) Draw a decay curve on the grid below for a radioactive substance that has a starting count rate of 800 counts/min and a shorter half-life than the one shown.

3. The circuit shown is used to investigate how the resistance depends upon the length of a wire.


The results from the experiment are shown in a table.

| Length of wire <br> $(\mathrm{cm})$ | Voltage <br> $(\mathrm{V})$ | Current <br> $(\mathrm{A})$ | Resistance of wire <br> $(\Omega)$ |
| :---: | :---: | :---: | :---: |
| 10 | 1.80 | 0.90 | 2.00 |
| 20 | 1.80 | 0.45 | 4.00 |
| 30 | 1.80 | $\ldots \ldots \ldots .$. | 6.00 |
| 50 | 1.80 | 0.18 | 10.00 |
| 60 | 1.80 | 0.15 | 12.00 |
| 75 | 1.80 | 0.12 | 15.00 |

(a) Use the equation:

$$
\text { current }=\frac{\text { voltage }}{\text { resistance }}
$$

to fill in the missing value in the table.
(b) Write down the name of the quantity that is measured by $\mathbf{X}$ in the diagram above.
$\qquad$

(ii) Describe the relationship between the resistance and length of the wire.
.................................................................................................................................................................
$\qquad$
$\qquad$
(d) Use the table on page 8 to answer the following question. The science technician stated that a one metre length of the wire had a resistance of $30 \Omega$. Explain whether this statement was true.
$\qquad$
$\qquad$
$\qquad$
(e) State, giving a reason, whether a second set of readings should have been taken.
(e) State, giving a reason, wher a second set reading should haven
$\qquad$

## BLANK PAGE

## PLEASE DO NOT WRITE ON THIS PAGE

4. A crane is used on a building site to vertically lift building materials. It uses an electric motor to winch a cable that is connected to a container full of bricks.

(a) The electric motor is supplied with a voltage of 120 V and a current of 5.0 A to lift the bricks. Use the equation:

$$
\text { power }=\text { voltage } \times \text { current }
$$

to calculate the power developed by the motor.
(b) (i) State the difference between the mass and the weight of the bricks.
$\qquad$
$\qquad$
$\qquad$
(ii) The weight of the bricks is 5000 N . Calculate the mass of the bricks.
( 1 kg weighs 10 N )
(c) The diagram shows the crane holding the bricks at rest above the ground. The attachment hook has a weight of 400 N .

(i) The cable supports the pulley block and bricks. Write down the value of the upward force applied in the cable.
$\qquad$
(ii) Underline the correct term in each bracket below.
I. When the bricks are accelerated upwards, the force in the cable is (smaller than / equal to / bigger than) the total weight.
II. When the bricks move upwards at a constant speed, the force in the cable is (smaller than / equal to / bigger than) the total weight.
5. Read the information in the passage and study the diagram before answering the questions that follow.
In the reactor, energy is released by fission and is the result of a controlled chain reaction. Fuel rods are made of uranium. The graphite moderator surrounds the fuel rods. The boron control rods can be raised and lowered.
The diagram shows the important parts in the core of a gas-cooled nuclear reactor.

(a) (i) Describe the process of fission of a single uranium nucleus in a gas-cooled reactor.
$\qquad$
$\qquad$
(ii) Explain the purpose of the graphite moderator.
$\qquad$
$\qquad$
$\qquad$

| (b) | ing the | ntrol rods increa |
| :---: | :---: | :---: |
|  | The table below shows different isotopes of uranium (U). |  |
|  | Isotope | Nuclear symbol |
|  | U-230 | ${ }_{92}^{230} \mathrm{U}$ |
|  | U-234 | ${ }_{92}^{234} \mathrm{U}$ |
|  | U-235 | ${ }_{92}^{235} \mathrm{U}$ |
|  | U-238 | ${ }_{92}^{238} \mathrm{U}$ |

(i) Tick $(\checkmark)$ the boxes next to three correct statements about the isotopes shown in the table.

All the isotopes have nuclei which contain 92 neutrons
A nucleus of U-230 contains the least number of neutrons
A nucleus of U-235 contains 143 neutrons
A nucleus of U-234 contains 92 protons
A nucleus of U-238 contains 238 protons

$\square$
$\square$
(ii) Complete the following nuclear equations which show the decay of two of the uranium isotopes listed in the table above.
${ }_{92}^{238} \mathrm{U} \longrightarrow \quad{ }_{2}^{4} \mathrm{He} \quad+\quad{ }_{90} \mathrm{Th}$
$\ldots \ldots . \quad \longrightarrow \quad{ }_{2}^{4} \mathrm{He}+{ }_{90}^{230} \mathrm{Th}$
6. The table below shows information about some radioisotopes.

| Radioisotope | Half-life | Method of decay |
| :---: | :---: | :---: |
| Tellurium-133 | 12 minutes | beta |
| Astatine-211 | 7.2 hours | alpha |
| Cobalt-60 | 5 years | beta and gamma |
| Caesium-137 | 30 years | beta |
| Americium-241 | 432 years | alpha |

(a) Using the information in the table, select the most suitable radioisotope for the tasks below, and give reasons for your choice.
(i) Treating cancer by injecting the radioisotope directly into the tumour.

Name of radioisotope: $\qquad$
Reasons:
I. $\qquad$
II.
. .-
(ii) To sterilise packaged surgical instruments.

Name of radioisotope: $\qquad$
Reasons:
I. $\qquad$
II. $\qquad$
(b) A sample of tellurium- 133 has an initial activity of 288 Bq .
xaminer only
(i) How many half-lives occur in 1 hour? ............................. [1]
(ii) Calculate the activity of the sample after 1 hour. [2]
activity $=$
Bq
$\qquad$
7. The Highway Code provides information about stopping distances.


The overall stopping distance is divided into two parts, thinking distance and braking distance.

Some of the factors which affect the overall stopping distance are shown in the table below.

| Column A | Column B | Column C |
| :---: | :---: | :---: |
| speed of the vehicle | condition of the brakes | alcohol |
|  | or |  |
|  | or |  |
| tiredness |  |  |

Choose one factor from each column of the table and describe fully how the chosen factors affect the distances described above.

In your answer, include the following:

- the three factors you have chosen;
- for each factor refer to the thinking distance, braking distance and overall stopping distance;
- describe clearly whether these distances are increased, decreased or unaffected by the factor.
$\qquad$

END OF PAPER

| $\begin{aligned} & \hline \text { Question } \\ & \text { number } \end{aligned}$ | Additional page, if required. <br> Write the question number(s) in the left-hand margin. |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

