GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL SCIENCE A A218/02 Unit 4: Ideas in Context (Higher Tier) Candidates answer on the question paper A calculator may be used for this paper ### **OCR Supplied Materials:** Insert (inserted) ### **Other Materials Required:** - Pencil - Ruler (cm/mm) Thursday 4 June 2009 Morning **Duration:** 45 minutes | Candidate
Forename | | | | | Candidate
Surname | | | | | | |-----------------------|-----|--|--|--|----------------------|--|-------------|-------|--|--| | Centre Numb | per | | | | | | Candidate N | umber | | | ### **MODIFIED LANGUAGE** ### **INSTRUCTIONS TO CANDIDATES** - Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above. - Use black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure that you know what you have to do before starting your answer. - Answer all the questions. - Do **not** write in the bar codes. - Write your answer to each question in the space provided, however additional paper may be used if necessary. ### **INFORMATION FOR CANDIDATES** - The number of marks is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 40. - A list of physics equations is printed on page two. - The Periodic Table is printed on the back page. - Where you see this icon you will be awarded a mark for the quality of written communication in your answer. - This document consists of **12** pages. Any blank pages are indicated. ### TWENTY FIRST CENTURY SCIENCE EQUATIONS ### **Useful Relationships** ### **Explaining Motion** $$speed = \frac{distance \ travelled}{time \ taken}$$ $$momentum = mass \times velocity$$ $$change \ of \ momentum = resultant \ force \times time \ for \ which \ it \ acts$$ $$work \ done \ by \ a \ force = force \times distance \ moved \ by \ the \ force$$ $$change \ in \ energy = work \ done$$ $$change \ in \ GPE = weight \times vertical \ height \ difference$$ kinetic energy = $\frac{1}{2}$ × mass × [velocity]² ### **Electric Circuits** resistance = $$\frac{\text{voltage}}{\text{current}}$$ $$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$ energy transferred = power × time power = potential difference \times current efficiency = energy usefully transferred × 100% total energy supplied ### The Wave Model of Radiation wave speed = frequency × wavelength 3 # **BLANK PAGE** # PLEASE DO NOT WRITE ON THIS PAGE Question 1 starts on page 4. © OCR 2009 Turn over # Answer all the questions. # This question is based on the article 'Acids in the body'. 1 | (a) | Loo | k at t | he result | ts of the | he st | udent's | s investig | gatio | n. | | | | | | | | | |-----|------------------|--------|-----------------------|-----------|---------------|----------|-------------------|--------|-------|---------|---------|---------|--------|--------|--------|---------|---------| | | (i) | Wha | at happe | ns to | the ra | ate of t | he react | ion v | wher | n the c | oncer | ntratio | n ch | ange | es? | [1] | | | (ii) | | ideas at
of reacti | | artic | les col | liding to | expl | ain h | now ch | angin | g the | con | centr | ation | affects | the | | | | | | | | | | | | | | ••••• | [2] | | | (iii) | Why | is it imp | ortan | t to n | neasur | e the te i | mpe | ratu | re whe | en the | expe | erime | ent is | carrie | ed out? | • | | | | | | | | | | | | | | | | | | |
[1] | | (b) | | | es out a | n exp | erime | ent to i | nvestiga | te ho | ow c | arbona | ates re | eact v | vith a | acid. | | | [1] | | | | | e the wo
the syml | | | | quations | for th | he re | eactior | ۱. | | | | | | | | | cium
onate | e + | hydroch
acid | | \rightarrow | | | | + | | | | + | | | | | | Ca | ICO ₃ | + | | | \rightarrow | (| CaCl ₂ | | + | | | | + | | | | [3] | $\rm H^+ + OH^- {\:\longrightarrow\:} H_2O$ | (c) | The general | equation for | a neutralisation | reaction is | |-------------|-------------|--------------|------------------|-------------| | \- <i>'</i> | 9 | | | | (d) The table shows some information about some compounds used in medicines. Complete the table to show the two missing formulae. | name of compound | formula | ions in compound | | | | | | |---------------------|-------------------|-----------------------|--------------------|--|--|--|--| | name or compound | Iominia | names | formula of ion | | | | | | magnesium carbonate | MgCO ₃ | magnesium ion | Mg ²⁺ | | | | | | magnosiam sarbonato | mgcc ₃ | carbonate ion | | | | | | | sodium | | sodium ion | Na ⁺ | | | | | | hydrogencarbonate | | hydrogencarbonate ion | HCO ₃ - | | | | | [2] | (e) | Calcium carbonate and sodium hydrogencarbonate are both used in medicines. Sodium hydrogencarbonate works much better than calcium carbonate at neutralising acids in the blood . Explain why. | |-----|---| | | [2] | [Total: 13] © OCR 2009 Turn over ### This question is based on the article 'Help for patients with kidney failure'. - 2 (a) During dialysis, **urea** passes out of the blood into the dialysis fluid by diffusion. - (i) Explain why urea diffuses out of the blood into the dialysis fluid. In your answer you should write about - what happens during diffusion - the concentration of urea. | Ġ | | One mark will be for writing in sentences with correct spelling, punctuation and grammar. | |----|-------|--| [2+1] | | | (ii) | How does a partially permeable membrane work? | | | | | | | | [2] | | | (iii) | The blood and the dialysis fluid flow in opposite directions in a dialysis machine. | | | | How does this affect the diffusion of urea out of the blood? | | | | | | | | [1] | | b) | | ng the information provided, determine the percentage of the UK population likely to ome patients with chronic kidney failure each year. | | | Sho | w your calculations. | | 0/ | ΓΛΊ | |-------|-----| |
% | [2] | | (c) | Why is it important to maintain balanced water levels in cells in the human body? | | |-----|--|------------| | | | | | | | [2] | | (d) | Drinking alcohol affects the water balance in the human body. | | | | What effect does alcohol have on the production of urine? | | | | In your answer you should | | | | consider the volume and concentration of urine produced under these conditions | | | | describe how the production of ADH is affected by drinking alcohol. | | | | | | | | | | | | | | | | | [3] | | (e) | The kidney is one of the organs in the human body involved in homeostasis . | | | | What is homeostasis? | | | | | | | | | [1] | | | [Total: 1 | 4] | | This question | is base | d on the artic | e 'A time-line | e of scientific | discoveries | about light' | |----------------|-----------|----------------|----------------|------------------|-------------|--------------| | TITIS GUESTION | i io basc | u on the artic | | c oi solciilillo | uiscoveries | about Hall | | 3 | (a) | In 1817, Thomas | Young showed | I that light is a | transverse wave. | |---|-----|-----------------|--------------|-------------------|------------------| |---|-----|-----------------|--------------|-------------------|------------------| Describe the differences between a transverse wave and a longitudinal wave. Your answer should include - a labelled diagram of each type of wave - the differences between them. | | | [3] | |-----|---|-----| | (b) | In 1865, James Clerk Maxwell said that light was an electromagnetic wave. | | | | State two ways in which electromagnetic waves are different from sound waves. | | | | 1 | | | | 2 | [1] | | (c) | In 1861, Maxwell took the first colour photograph. He used red, yellow and blue filters a then recombined the images. | and | | | Give two differences between red, yellow and blue light waves, other than colour. | | | | | | | | | [0] | | (d) | In 1900, Max Planck suggested that light could be made up of packets of energy. These are now called photons. | |-----|---| | | In 1905, Albert Einstein showed that the intensity of a beam of light could be explained by thinking of light as a stream of photons. | | | Use ideas about light as a stream of photons to explain how light beams can have different intensities. | | | | | | [2] | | (e) | Einstein also proposed a theory that the speed of light in a vacuum is constant. The speed of light is $300000000m/s$. | | | Calculate the frequency of an electromagnetic wave with a wavelength of 1.5 m. | | | | | | | | | frequency = unit [3] | | (f) | Isaac Newton looked at the refraction of light through a prism. Refraction is caused by waves changing speed. | | | Describe what happens to the wavelength and the frequency as a wave refracts. | | | | | | | | | [2] | | | [Total: 13] | **END OF QUESTION PAPER** # 10 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE ### PLEASE DO NOT WRITE ON THIS PAGE ### Copyright Information OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations, is given to all schools that receive assessment material and is freely available to download from our public website (www.ocr.org.uk) after the live examination series. If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity. For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1PB. OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © OCR 2009 # The Periodic Table of the Elements | | | | | | | _ | |-------------------------|--|--|---|-----------------------------------|--|--| | 4 He helium 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | t fully | | | 19
F
fluorine
9 | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | orted but no | | | 16
0
0
0
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po potonium 84 | ve been repo | | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | rs 112-116 hav
authenticated | | | 12
C
carbon
6 | 28
Si
silicon | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207
Pb
tead
82 | mic numbers
a | | | 11
B
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
Tl
thallium
81 | Elements with atomic numbers 112-116 have been reported but not fully
authenticated | | • | | | 65
Zn
zinc
30 | Cd
Cadmium
48 | 201
Hg
mercury
80 | Eleme | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg
roentgenium
111 | | | | | 59
Ni
nicket
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | Ds darmstadtium | | | | | 59
Co
cobalt
27 | 103
Rh
rhodium
45 | 192
 Ir
 iridium
 77 | [268]
Mt
meitnerium
109 | | 1
H
hydrogen
1 | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | ve atomic mass
omic symbol
name
(proton) number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | Кеу | | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | relati
atc
atomic | | 48
Ti
titanium
22 | 91
Zr | 178
Hf
hafnium
72 | Rf
rutherfordium
104 | | • | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
tanthanum
57 | [227]
Ac*
actinium
89 | | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226]
Ra
radium
88 | | | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | | | 1
H
hydrogen
1 | Key 1 hydrogen 1 H hydrogen 1 T 14 16 19 P Be C N O F P Be Be C N O F A A A A B B C N C N C N C N C N A A A A A A A A B B B C N </td <td>Key Telative atomic mass atomic (proton) number 1 h hydrogen 1 hydrogen 1 hydrogen 2 hydrored atomic symbol and mane 2 hororing atomic (proton) number 3 h hydrogen 2 h hydrored 2 h hydrored 2 h hydrored 3 hydr</td> <td> 1</td> <td> Figure F</td> <td> Figure F</td> | Key Telative atomic mass atomic (proton) number 1 h hydrogen 1 hydrogen 1 hydrogen 2 hydrored atomic symbol and mane 2 hororing atomic (proton) number 3 h hydrogen 2 h hydrored 2 h hydrored 2 h hydrored 3 hydr | 1 | Figure F | Figure F | * The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.