A218/01 # **GENERAL CERTIFICATE OF SECONDARY EDUCATION** TWENTY FIRST CENTURY SCIENCE **ADDITIONAL SCIENCE A** Unit 4: Ideas in Context (Foundation Tier) **FRIDAY 23 MAY 2008** Afternoon Time: 45 minutes Candidates answer on the question paper. Additional materials (enclosed): Insert Calculators may be used. Additional materials: Pencil Ruler (cm/mm) | Candidate
Forename | . | | Candidate
Surname | | | | | | | | | |-----------------------|----------|--|----------------------|--|--|---------------------|--|--|--|--|--| | Centre
Number | | | | | | Candidate
Number | | | | | | ### **INSTRUCTIONS TO CANDIDATES** - Write your name in capital letters, your Centre Number and Candidate Number in the boxes above. - Use blue or black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure that you know what you have to do before starting your answer. - Answer all the questions. - Do **not** write in the bar codes. - Write your answer to each question in the space provided. ### **INFORMATION FOR CANDIDATES** - The number of marks for each question is given in brackets [] at the end of each question or part question. - The total number of marks for this paper is 40. - A list of physics equations is printed on page two. - The Periodic Table is printed on the back page. Where you see this icon you will be awarded a mark for the quality of written communication in your answer. | FOR EXAMINER'S USE | | | | | | |--------------------|------|------|--|--|--| | Qu. | Max. | Mark | | | | | 1 | 14 | | | | | | 2 | 13 | | | | | | 3 | 13 | | | | | | TOTAL | 40 | | | | | This document consists of **10** printed pages, **2** blank pages and an insert. SPA (SHW 00054 5/07) T48672/4 © OCR 2008 [K/103/3777] OCR is an exempt Charity [Turn over ### **EQUATIONS** ### **Useful Relationships** ### **Explaining Motion** $$speed = \frac{distance travelled}{time taken}$$ $momentum = mass \times velocity$ change of momentum = resultant force \times time for which it acts work done by a force = force \times distance moved by the force change in energy = work done change in GPE = weight \times vertical height difference kinetic energy = $$\frac{1}{2}$$ × mass × [velocity]² ### **Electric Circuits** resistance = $$\frac{\text{voltage}}{\text{current}}$$ $$\frac{V_{\rm p}}{V_{\rm s}} = \frac{N_{\rm p}}{N_{\rm s}}$$ energy transferred = power \times time power = potential difference \times current efficiency = energy usefully transferred × 100% total energy supplied ### The Wave Model of Radiation wave speed = frequency \times wavelength 3 BLANK PAGE ## PLEASE DO NOT WRITE ON THIS PAGE Question 1 starts on page 4 © OCR 2008 [Turn over # Answer **all** the questions. This question is based on the article 'Tufa towers at Mono Lake, California'. | 1 (a) | Salt | crystals form around the edges of the lake. | |--------|-------|--| | | (i) | Explain how the salt crystals form. | | | | | | | | [2] | | | (ii) | The amount of salt crystals that form varies through the year. | | | | Give two reasons why. | | | | 1 | | | | 2[2] | | | (iii) | The lake water contains sodium, potassium, magnesium, sulfate, chloride and carbonate ions. | | | | One solid salt that forms is sodium chloride. | | | | Give the name of one other salt that forms. | | | | [1] | | (b) | | towers of tufa rock are formed when calcium ions from the hot springs react with carbonate in the lake water. Calcium carbonate forms. | | | Cor | nplete the word equation for this reaction by filling in the boxes. | | calciu | m ior | \rightarrow | | | | [1] | 1 (c) Calcium carbonate is an ionic solid. The table shows some information about ions dissolved in the lake water and ions in solid calcium carbonate. Complete the table. | | ions dissolved in the lake water | ions in solid calcium carbonate | |---------------------|---|---------------------------------| | movement of ions | move freely around other ions and water molecules | | | arrangement of ions | random arrangement | | [2] (d) Joe visits the lake and carries out some experiments. He finds that the water is a good electrical conductor. Explain how water that contains dissolved ionic compounds conducts electricity. [2] (ii) Joe wants to check the pH of the water. Give **two** ways that Joe could do this. 1 (iii) What would you expect the pH of the alkaline lake water to be? Put a (ring) around the correct answer. 2 5 7 10 [1] (iv) Joe is worried about handling the lake water because he knows it is alkaline. Suggest a safety precaution that Joe should take when working with the lake water. [Total: 14] © OCR 2008 [Turn over ### This question is based on the article 'Bendy lampposts save lives'. | • | s qui | Jolie | on is based on the article bendy lampposts save lives. | | |---|-------|-------|---|-----| | 2 | (a) | (i) | Read the statements below about collision times at low speeds. | | | | | | They compare bendy lampposts with rigid steel lampposts. | | | | | | Which one of the statements is correct? | | | | | | Put a tick (✓) in the correct box. | | | | | | The collision time with a bendy lamppost is longer. | | | | | | The collision time with a bendy lamppost is shorter. | | | | | | The collision time is the same. | [1] | | | | (ii) | The graph shows how the force on the car changes with how long the collision lasts. | | | | | | force on car | | | | | | how long the collision lasts | | | Describe how the force changes with how long the collision lasts. | | |---|-----| | | | | Suggest two safety features that are built into cars that also help to reduce injuries. | | | 1 | | | 2 | [2] | (iii) **(b)** When the very **first breakable** lampposts were invented a reporter said: 'The danger of a broken post hitting a pedestrian or another car means they are unlikely to be used in towns.' | | Why | is this less of a problem for the newer lampposts? | |-----|------|---| | | | [2] | | (c) | Whe | en a car hits a lamppost it has energy of motion. | | | (i) | What is the name for this energy of motion? | | | | [1] | | | (ii) | During the collision, some of the energy goes to the lamppost and some to sound and heat. | | | | How does the total amount of energy before the collision compare to the total amount of energy after the collision? | | | | [1] | | (d) | The | article says that the momentum of the car can be reduced by 30%. | | | (i) | What two measurements do scientists need to make to calculate momentum? | | | | How do you use the measurements to calculate momentum? | | Ø | | One mark is for a clear, ordered answer. | | | | | | | | | | | | | | | | [3+1] | | | (ii) | Any collision involves two forces. | | | | One force changes the momentum of the car. | | | | What does the other force do? | | | | | | | | [1] | | | | [Total: 13] | This question is based on the article 'Cot deaths linked to brain abnormality'. | (a) | Bab | ies, like all living organisms, respond to many stimuli. | |-----|------|---| | | (i) | Which stimulus described in the article does the baby respond to? | | | | | | | (ii) | How does a normal baby respond to this stimulus? | | | | [1] | | (b) | The | response by the baby is an example of an involuntary reflex action. | | | (i) | Suggest an advantage to the body of involuntary reflexes. | | | | | | | | | | | (ii) | Describe two other examples of simple involuntary reflexes found in newborn babies. | | | | | | | | [2] | | (c) | | scribe two differences between the brains of babies who died of SIDS and the brains of other babies. | | | | | | | | | | | | [2] | 3 | (d) | Ser | otonin is released into synapses. | |-----|------|---| | | (i) | What is a synapse? | | | | | | | | [1] | | | (ii) | Information is transmitted across synapses using chemicals. | | | | How is information transmitted along neurons? | | | | [1] | | (e) | The | pictures show scans through part of the brain called the cerebral cortex. | | | Des | cribe two functions of the cerebral cortex. | | | | | | | | | | | | [2] | | (f) | Kinr | ney and Paterson thought that a lack of receptors for serotonin was responsible for SIDS. | | | | k at the article about cot deaths and suggest two reasons why the evidence is not clusive. | | | | | | | | | | | | [2] | | | | [Total: 13] | ### **END OF QUESTION PAPER** # 10 BLANK PAGE PLEASE DO NOT WRITE ON THIS PAGE ### PLEASE DO NOT WRITE ON THIS PAGE Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. # The Periodic Table of the Elements | 0 | 4
He | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | t fully | |----------|-------------------------|---|---------------------------------|----------------------------------|-----------------------------------|-----------------------------------|---| | 7 | | 19
F
fluorine
9 | 35.5
Cl
chlorine
17 | 80
Br
bromine
35 | 127
 | [210]
At
astatine
85 | orted but no | | 9 | | 16
0
0xygen
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ve been repo | | 2 | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112-116 hav
authenticated | | 4 | | 12
C
carbon
6 | 28
Si
silicon
14 | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207
Pb
lead
82 | mic numbers
a | | က | | 11
B
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
TI
thallium
81 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | | · | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Eleme | | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | Rg roentgenium | | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds darmstadtlum 110 | | | | | | 59
Co
cobalt
27 | 103
Rh | 192
 Ir
 iridium
 77 | [268]
Mt
meitnerium
109 | | | 1
H
hydrogen
1 | | | 56
Fe
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | | mass
ool | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | Sg
seaborgium
106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relati
atc
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | Rf rutherfordium 104 | | | , | | | 45
Sc
scandium
21 | 89
Y
yttrium
39 | 139
La*
Ianthanum
57 | [227]
Ac*
actinium
89 | | 2 | | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226]
Ra
radium
88 | | ~ | | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223]
Fr
francium
87 | | | | | | | | | | * The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.