OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

SCIENCE: DOUBLE AWARD A PHYSICS
 PAPER 6
 PAPER 2
 1983/6
 1982/2
 HIGHER TIER
 SPECIMEN PAPER 2003
 1 hour 30 minutes

Candidates answer on the question paper.
Additional materials required:
Pencil
Ruler (cm/mm)

Candidate Name

Centre Number

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name in the space above.
- Write your Centre number and Candidate number in the boxes above.
- Answer all the questions.
- Write your answers, in blue or black ink, in the spaces on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 100 .
- You will be awarded marks for the quality of written communication where an answer requires a piece of extended writing.

FOR EXAMINER'S USE	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
TOTAL	

1 Sam is investigating how the resistance of a lamp changes as she alters the current through
it.
She uses this circuit.

(a) She adjusts the setting of the variable resistor. Explain how this affects the current.
\qquad
\qquad
\qquad
(b) She records the values of the voltage across the lamp as the current changes.

She plots this graph.

1982/2 Specimen 2003
(i) Use the graph to find the value of the current when the voltage is 4.0 V .

$$
\text { current }=\ldots \text { amps [1] }
$$

(ii) Calculate the resistance of the lamp when the voltage is 4.0 V .

You must show how you work out your answer.
resistance $=$ \qquad ohms [3]
(c) How can you tell from the graph that the resistance of the lamp increases between 4.0 V and 8.0 V ?
\qquad
[Total: 7]

2 A group of houses uses solar panels and windmills as alternative energy sources.

(a) The panels and windmills are expensive to install.

Eventually all the money spent on them will be recovered.
Explain why.
\qquad
\qquad
\qquad
(b) Jan works out the efficiency of one of the windmills.

The energy of the air hitting the blades of the windmills is 20000 J each second.
The energy transferred to the power lines is 5000 J each second.
Calculate the efficiency of the windmill.
Use the equation below.
You must show how you work out your answer.

$$
\text { energy efficiency }=\frac{\text { useful energy output }}{\text { total energy input }}
$$

3 This question is about electromagnetism.
Graham makes a simple electric bell.

He closes the switch.
(a) The hammer moves to the right and hits the gong.

Explain why.
\qquad
\qquad
\qquad
(b) The hammer now moves back to the left.

Explain why.
\qquad
\qquad
\qquad
[Total: 4]

4 The central heating system in a house pumps hot water around the building.
The temperature inside is monitored and controlled using a sensing circuit.
This controls a switch for the pump.
The sensing circuit contains a thermistor.
The graph shows how the resistance of the thermistor varies with temperature.

(a) Use the graph to find the change in resistance between $15^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$.

You must show how you work out your answer.
change in resistance $=$ \qquad ohms [2]
(b) The sensing circuit is more sensitive to temperature changes below $15^{\circ} \mathrm{C}$ than above $25^{\circ} \mathrm{C}$. Use the graph to explain why.
You will be given credit for the correct use of spelling, punctuation and grammar.
\qquad
\qquad
\qquad
[Total: 5]

5 Some water waves pass through a gap between two stepping stones across a small stream.

(a) Finish the diagram to show what happens to these waves after they pass through the gap.
(b) Write down two factors that affect the amount of diffraction of the waves.

For each factor, describe how increasing it affects the amount of diffraction.
You will be given credit for the correct use of technical terms and for correct use of spelling, punctuation and grammar.

Factor 1 \qquad
Effect \qquad

Factor 2 \qquad
Effect \qquad
[Total: 7]

6 Kate's teacher wants to find how much beta radiation passes through different thicknesses of aluminium.

First he measures background radiation.
It gives a reading of 60 counts per minute on the ratemeter.
(a) Suggest two possible sources of background radiation.

1

2 \qquad
(b) Write down two safety precautions that he should take when using the beta source.

1

2 \qquad [2]

He now records the count rate for different thicknesses of aluminium.
The table shows the results.

thicknesses of aluminium in $\mathbf{~ m m}$	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0
actual ratemeter reading in counts per minute	560	310	180	120	90	75	60	60
corrected count rate in counts per minute	500	250						

(c) Finish the table. There are six gaps.
(d) (i) Plot the points on the grid opposite.
(ii) Finish the graph by drawing the best curve.

9

(e) Aluminium is rolled into sheets twenty millimetres thick in a rolling mill.

A radioactive source and a detector are used to check the thickness of the sheet as it leaves the rollers.

(i) Why is beta radiation not suitable for checking twenty millimetre sheet?
\qquad
\qquad
(ii) Suggest one type of radiation which could be used to check the thickness of twenty millimetre sheet.
\qquad
(iii) The radioactive isotope used has a half-life of 5.3 years.

Explain what is meant by the term half-life.
\qquad
\qquad
\qquad
(iv) One rolling mill uses 20 mg of this isotope as the source.

What will be the mass of this radioactive isotope in the source 10.6 years later?
mass $=$ \qquad mg [1]
(v) It would not be sensible to use, in the rolling mill, a radioactive isotope with a halflife much shorter than 5.3 years. Explain why.
\qquad
\qquad
\qquad
[Total: 13]

7 When X-rays were discovered scientists did not realise that they were dangerous. X-rays can cause similar effects on the human body as radiation from radioactive sources.

Suggest some evidence about the effects of X-rays which made scientists change their mind.
\qquad
\qquad
\qquad
[Total: 2]

8 (a) The diagram shows a model generator.

(i) What happens in the coil of wire when the magnet rotates?
\qquad
(ii) Why does this happen?
\qquad
(b) The ends of the coil are connected to a cathode ray oscilloscope (CRO). The diagram shows the trace on the screen as the magnet rotates.

Draw new traces for each of the following changes.
(Assume the settings of the oscilloscope remain the same).
(i) The magnet rotates at the same speed, in the same direction as the original, but the number of turns of the coil is doubled.

(ii) The magnet rotates at twice the speed, in the same direction, with the original number of turns of the coil.

(c) Explain why iron is used as the core in the model generator.
\qquad
\qquad
\qquad
(d) The output from the power station generator is connected to a step-up transformer. The transformer is connected to transmission lines.

Explain why a step-up transformer is needed. Use your ideas about power losses in transmission.
You will be given credit for the correct use of technical terms and for correct use of spelling, punctuation and grammar.
\qquad
\qquad
\qquad
\qquad
\qquad

9 The graph shows the orbit time and average distance from the Sun of some planets and some asteroids.

Asteroids are sometimes called minor planets.

(c) The asteroid Ida is in orbit at an average distance of 430 million km from the Sun.

Use the graph to find out how long it takes Ida to orbit the Sun.
You must show clearly, on the graph, how you got your answer.
orbit time =
\qquad Earth years [2]
(b) The spacecraft, Galileo, recently discovered that Ida has a tiny moon called Dactyl.

Explain why Dactyl orbits Ida.
\qquad
(c) Look carefully at the picture of Ida.

Scientists looking at this picture suggest that Ida has no atmosphere.
Give as much evidence as you can from your observations which supports their suggestion.
You will be given credit for the correct use of spelling, punctuation and grammar.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) The light from stars in distant galaxies is observed to be red shifted. Measurements of red shift allow astronomers to calculate the speed that the galaxies are travelling away from us. The graph shows how the speed that galaxies move away from us varies with their distance from us.
speed of galaxy
in
km per second

(a light year is the distance travelled by light in one year)
(i) What is meant by red shift?
\qquad
\qquad
(ii) A galaxy moves away from us at $30000 \mathrm{~km} / \mathrm{s}$.

Use the graph to estimate how far away the galaxy is.
You must show clearly on the graph how you got your answer.
distance =
\qquad millions of light years [2]
(iii) How long would it take light to travel this distance?
time $=$ \qquad millions of years [1]
(iv) The galaxy, moving at $30000 \mathrm{~km} / \mathrm{s}$ is travelling at one tenth (0.1) of the speed of light. Assuming that all matter in the Universe was originally in one place, and the speed of the galaxy is constant, how long has it taken for the galaxy and us to be this distance apart?

You must show how you work out your answer.
time taken $=$ \qquad millions of years [2]
[Total: 13]

10 (a) Ben hangs a small light plastic ball on a nylon thread.
The ball has a metal coating.
It is not charged.

He rubs a strip of polythene with a cloth.
The strip becomes negatively charged.
He brings the strip close to (but not touching) the ball.
The ball moves towards the strip.

Explain why the ball moves towards the strip even though it is not charged.
Drawing on the diagram may help your answer.
\qquad
\qquad
\qquad
\qquad
(b) Ben now touches the ball briefly with an earthed wire.

He then removes the negative polythene strip.
The ball becomes positively charged.
Use your knowledge about movement of electrons to explain why the ball is now positively charged.
\qquad
\qquad
\qquad

11 David uses the exercise machine below.
His heels apply a force to the padded bar. This lifts the heavy weights.
For this question the following equations will be useful.
moment of a force $=$ force \times perpendicular distance to pivot
sum of clockwise moments = some of anticlockwise moments
The weight of 1 kg is 10 N .

(a) The heels press against the pad with a force F and cause a turning effect about the pivot. The force of gravity due to the weights act through their centre, at C .

Calculate the value of F when the weights are in the position shown in the diagram. You must show how you work out your answer.

$$
F=
$$

\qquad N [3]
(b) Explain why does it become harder to lift the weights when they move to the right.
\qquad
\qquad
[Total: 5]

12 This question is about the movements of the Earth's plates and earthquake waves.
The diagram represents a zone where an ocean plate meets a continental plate.

(a) In the diagram the ocean plate is slowly moving downwards under the continental plate. What happens to the rock in the ocean plate as it moves into the mantle?
(b) Why does the ocean plate move under the continental plate?
\qquad
\qquad
(c) The diagram shows a cross-section of the Earth.

There is an earthquake at place \mathbf{Q}.
Sensitive detectors at positions 1, 2, 3, 4 and $\mathbf{5}$ are designed to pick up two types of earthquake waves. These types are called \mathbf{P} and \mathbf{S} waves.

(i) Finish these sentences.

P waves are \qquad waves which can be detected at positions \qquad .

S waves are \qquad waves which can be detected at positions \qquad .
(ii) The path of one of the earthquake waves changes direction at the point marked \mathbf{X}. What is the name given to this change of direction of waves?
(iii) Explain why the wave path changes direction at \mathbf{X}.
\qquad
\qquad
\qquad
[Total: 9]

13 The towns of Lynton and Lynmouth, in Devon, are joined by a cliff railway.
Two cars are joined by a thick cable passing over a large pulley.
The cars have water tanks under them. These tanks are filled from the river Lyn at the top and emptied out at the bottom of the cliff in Lynmouth.

not to scale

LYNMOUTH

The diagram shows the cars at the stations. The water tank under the top car is filled with water. The brakes are released.

Then the water tank under the bottom car is emptied. The top car is now heavier than the bottom car. It goes down the rails, pulling the bottom car up.
(a) The graph shows how the speed of the upper car changes as it descends.

Use the graph to calculate the total distance travelled by the upper car as it descends.
You must explain how you work out your answer.
distance $=$ \qquad unit \qquad [4]
(b) The top car loses potential energy as it goes down the cliff.

The station at Lynton is a height of 150 m above Lynmouth.
The mass of a fully loaded car is 10000 kg .
Calculate the potential energy lost by a fully loaded car between the top and bottom of the cliff.

Use the equation below. You must show how you work out your answer. (Gravitational field strength is $10 \mathrm{~N} / \mathrm{kg}$.)
change in gravitational potential energy $=$ mass \times gravitational field strength \times height moved
loss in potential energy =
\qquad unit \qquad [2]
(c) The water to fill the tanks comes from the river Lyn which flows near Lynton. Explain why the cliff railway is an environmentally friendly user of energy resources.
\qquad
\qquad
\qquad
\qquad
[Total: 8]

14 Scientists have studied the skies for a long time.
Look at the information in the table.

Object	How it appears in the sky		
Sun	sweeps steadily across the sky during the daytime star A star B		
Venus	sweeps steadily across the sky during the night time moves differently across the sky during the night time		
TV satellite during the night time		\quad	sweeps quickly across the sky during the daytime
:---			

Scientists have collected evidence and made theories to explain what can be seen in the sky.

At one time, people believed that the Earth was the centre of the universe and that the Sun orbited the Earth.

In the early sixteenth century a scientist called Copernicus studied how planets moved in the sky. He came to the conclusion that the Earth and the planets orbited the Sun. He told other scientists by writing a book, it took 13 years before the book was published.

Another scientist, Galileo, read Copernicus' book many years later. He found that the book helped him explain some of his investigations. Galileo also believed that the planets went around the Sun.

Unfortunately in the early seventeenth century the Catholic Church still thought that the Earth was the centre of the universe. Galileo was sentenced to house arrest for his beliefs.
(a) It took a long time for Copernicus to be able to tell others of his ideas.

Nowadays it is much faster to tell other scientists of a new idea.
Suggest why.
\qquad
\qquad
\qquad
(b) Sometimes scientists like Galileo cannot get other people to believe their ideas.

Suggest two reasons why.
\qquad
\qquad
\qquad
(c) When Galileo and Copernicus were studying how planets and stars moved in the sky, they used telescopes. These telescopes were not very powerful.

Today the idea that the Earth moves around the Sun is firmly accepted. One of the reasons is that there is much more evidence available now than in the sixteenth and seventeenth centuries.

Suggest why scientists have been able to gather much more evidence now than in the past.
\qquad
[Total: 6]

