RECOGNISING ACHIEVEMENT

F

A332/01

Time: 40 minutes

Candidates answer on the question paper Additional materials (enclosed): None

Calculators may be used.
Additional materials: Pencil
Ruler (cm/mm)

INSTRUCTIONS TO CANDIDATES

- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Do not write outside the box bordering each page.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.

FOR EXAMINER'S		
USE		
Qu.	Max.	Mark
1	5	
2	4	
3	4	
4	4	
5	4	
6	2	
7	4	
8	4	
9	4	
10	3	
11	4	
TOTAL	42	

	This document consists of 16 printed pages. SPA (MML 15309)T42360/8 O OCR $2009[\mathrm{D} / 103 / 3794]$	Turn over an exempt Charity

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

speed $=$ distance travelled
time taken
momentum $=$ mass \times velocity
change of momentum $=$ resultant force x time for which it acts
work done by a force = force x distance moved by the force
change in energy = work done
change in GPE $=$ weight x vertical height difference
kinetic energy $=1 / 2 \times$ mass $\times[\text { velocity }]^{2}$

Electric Circuits

```
resistance \(=\quad\) voltage
    current
```

$\frac{\text { Voltage across primary coil }}{\text { Voltage across secondary coil }}=\frac{\text { Number of turns in primary coil }}{\text { Number of turns in secondary coil }}$
energy transferred = power x time
power $=$ potential difference \times current
efficiency $=$ energy usefully transferred $\times 100 \%$
total energy supplied
The Wave Model of Radiation
wave speed $=$ frequency \times wavelength

Answer all the questions.

1 Dan goes to buy a newspaper for his granddad in the morning. He walks in a straight line to the shop and back.
(a) The graph shows the distance Dan is from home and the time it takes.

Complete the table below.
Each letter may be used once, more than once or not at all.

what Dan is doing	Part of the graph (A, B C or D)
standing still	
walking at his fastest speed	
walking with a negative velocity	

(b) Dan is walking, so he has momentum.

The equation linking momentum, mass and velocity is:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

Dan has a mass of 60 kg .
At one time his velocity is $2 \mathrm{~m} / \mathrm{s}$.
Calculate Dan's momentum. Show your working
momentum $=$
kg m / s [2]
[Total: 5]

2 Bobby is playing with a ball.

(a) Complete the following sentences.

Choose words from this list.

Bobby lifts the ball above his head.
The force acting downwards on the ball is
To calculate the work done by Bobby in lifting the ball you must multiply the force by the
\qquad
(b) Bobby lets the ball fall to the ground.

Describe the energy change as the ball falls to the ground.
\qquad
\qquad
\qquad

3 A driver in a car experiences forces in different directions as he drives forwards.

(a) Describe the forces acting on the driver as the car slows down and turns left at the same time.
\qquad
\qquad
\qquad
(b) When the car speeds up in a straight line the driver and the car exert forces on each other. Describe these forces.
\qquad
\qquad
\qquad

4 Here are some circuit symbols for electrical components.
$\mathrm{A} \longrightarrow \mathrm{O}-$
D

B

E

C
A
F

This circuit uses some of the components.
Write the letter for each component symbol in the correct box in the circuit.
One has been done for you.

[4]
[Total: 4]

5 The most commonly used model of electric circuits uses ideas about current and electrons. Complete the sentences. Choose statements from this list.

> a flow of charge
> a repulsive force
> a continuous loop
> an attractive force
> a negative charge
(a) An electron has [1]
(b) In a circuit the electrons move in [1]
(c) Electric current is [1]
(d) Two negative charges are pushed apart by [1]

6 This question is about making measurements in an electric circuit.
Here are three circuits.

(a) Which circuit, \mathbf{P}, \mathbf{Q} or \mathbf{R}, is correct for measuring the current through the lamp and the voltage across the lamp?
answer
(b) Put a ring around the word which means the same as potential difference.

```
charge current power voltage
```

[Total: 2]

7 Electricity can be generated by moving a magnet in a coil of wire.
The diagram shows a magnet held above a coil of wire.

Experiments with this apparatus can show how the electricity is generated.
(a) Draw a straight line from each experiment to what happens on the meter.

The first line has been done for you.
experiment what happens on the meter

(b) What is the name for this method of producing a voltage?

Put a ring)around the correct answer
deduction induction reduction transformation
[1]
[Total: 4]

8 Water waves and sound waves are different.
(a) This is a diagram of a water wave.

(i) Which letter, A, B, C, D or E, shows the amplitude of the wave? answer
(ii) Which letter, A, B, C, D or E, shows the wavelength of the wave?
answer
(b) Some water waves are transverse waves.

Another type of wave is a longitudinal wave.
What is the difference between transverse and longitudinal waves?
Your answer should include;

- how a particle moves
- an example of a longitudinal wave.
\qquad
\qquad
\qquad
\qquad
\qquad

9 Susan is experimenting with water waves in a ripple tank.

She draws some diagrams to show different wave properties.

interference

Complete the diagrams below for refraction and diffraction.
refraction

diffraction

10 Information can be sent using analogue or digital signals.
Sometimes the signals pick up noise.
Here are four different signals.

C

Explain the meanings of analogue and digital signals and noise.
Refer to the signal diagrams $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}, in your answers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

11 Here are different parts of the electromagnetic spectrum.
gamma radiation
infrared
microwaves
radio waves
ultraviolet
visible light
X-rays
(a) Put the parts of the electromagnetic spectrum in order of increasing wavelength.

The first one has been done for you.

(b) Photons with the highest frequency have the most energy.

Write down the name of the part of the spectrum that has photons with the most energy.
\qquad

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

CONFIDENTIAL

Guidance for Examiners

> Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
l = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore $\quad=$ statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf = error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy' (1)
work done = 0 marks
work done lifting = 1 mark
change in potential energy $=0$ marks
gravitational potential energy = 1 mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	2	2	1	1	1	1	0	0	0	NR

Question		Expected Answers	Marks	Rationale
$\mathbf{2}$		weight; (1) distance; (1)	2	
	gravitational potential energy; to kinetic energy;	2	note: direction must be correct for two marks	
	Total	$\mathbf{4}$		

Question		Expected Answers	Marks	Rationale
$\mathbf{3}$	a	Forces on driver are backwards; and left;	2	
	\mathbf{b}	forces are equal (in size); and opposite in direction; OR forwards on car; backwards on driver;	2	
	Total	$\mathbf{4}$		

Question		Expected Answers	Marks	Rationale
4	power supply = A (1) switch = B (1) lamp = E (1) variable resistor = F (1)	4	allow symbols if drawn correctly	
	Total	4		

Question		Expected Answers	Marks	
$\mathbf{5}$	\mathbf{a}	a negative charge (1)	1	Clear identification of phrase (from list)
	\mathbf{b}	a continuous loop (1)	1	Clear identification of phrase (from list)
	c	a flow of charge (1)	1	Clear identification of phrase (from list)
	d	a repulsive force (1)	1	Clear identification of phrase (from list)
		Total	$\mathbf{4}$	

Question		Expected Answers	Marks	Rationale
$\mathbf{6}$	\mathbf{a}	$\mathrm{R}(1)$	1	
	\mathbf{b}	voltage (1)	1	
		Total	$\mathbf{2}$	

Question			Expected Answers	Marks	Rationale
7	a			3	Mark lines from left hand box 1 mark for each correct line If two or more lines from left hand box, no mark
	b		induction (1)	1	
			Total	4	

Question			Expected Answers	Marks	Rationale
11	a		(gamma radiation) X-ray ultraviolet visible light infrared microwave radio waves	3	X-ray above ultraviolet Ultraviolet above visible Visible above infrared Infrared above microwave Microwave above radio waves 5 correct (3) 3 or 4 correct (2) 1 or 2 correct (1) accept phonetic spelling accept uv for ultraviolet accept ir for infrared accept μ wave for microwave accept radio for radio waves accept initial letters for each
		b	gamma (1)	1	Accept phonetic spelling Accept 'cosmic rays'
			Total	4	
			Section total	42	

