

A325/01

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE ADDITIONAL APPLIED SCIENCE A

Scientific Detection (Foundation Tier)

WEDNESDAY 18 JUNE 2008

Afternoon Time: 45 minutes

Candidates answer on the question paper. Additional materials (enclosed):

None

Calculators may be used.

Additional materials: Pencil

Ruler (cm/mm)

Candidate Forename				Candidate Surname							
Centre Number							Candidate Number				

INSTRUCTIONS TO CANDIDATES

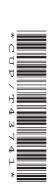
- Write your name in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use blue or black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided.

INFORMATION FOR CANDIDATES

- The number of marks for each question is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 36.

FOR EX	AWINER	(2 02E
Qu.	Max	Mark
1	7	
2	5	
3	6	
4	6	
5	6	
6	6	
TOTAL	36	

EOD EYAMINED'S HEE

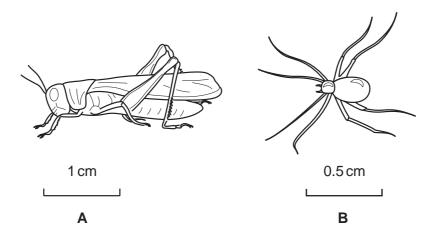

This document consists of 8 printed pages

SPA (SJF4646/CG) T43741/7

© OCR 2008 [M/103/3781]

OCR is an exempt Charity

[Turn over



Answer all the questions.

_			
1	Jane is an	environmental	scientist

She collects evidence of organisms present in a field.

She records the evidence by making sketches, **A** and **B**, of two of the organisms that she finds.

(a) Compare sketches A and B.

Identify three important differences between the two organisms.
1
2
3
[3]
[0]

(b) Use the scale on each sketch to determine the length of each organism.

A

	В	[2]
(c)	Describe two other ways that Jane could have recorded the appearance of the organisms.	se two
		[2]

2 Good laboratory practice is essential to produce reliable evidence.

Complete the crossword.

All the clues are about good laboratory practice.

Choose from the following list.

accreditation danger enforcement environmental procedures proficiency protection reliable safety

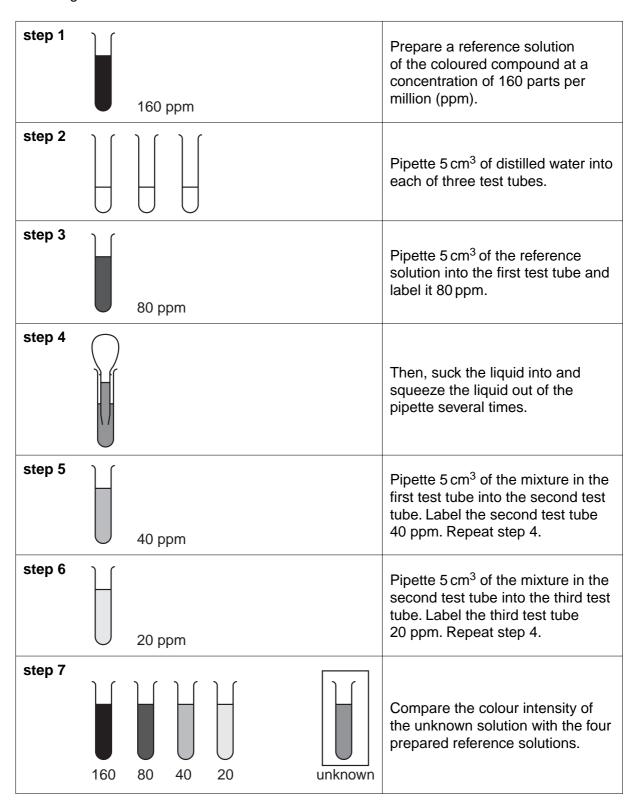
		1					
2							
3							
		4					
						•	
	,						

Across

1	Αt	type (of te	est (used	to	chec	k a	labo	orat	ory	/.
---	----	--------	-------	-------	------	----	------	-----	------	------	-----	----

- What laboratories get when they pass the test.
- 4 Good laboratory practice produces evidence.

Down


1 Reliability is increased by using common practice and

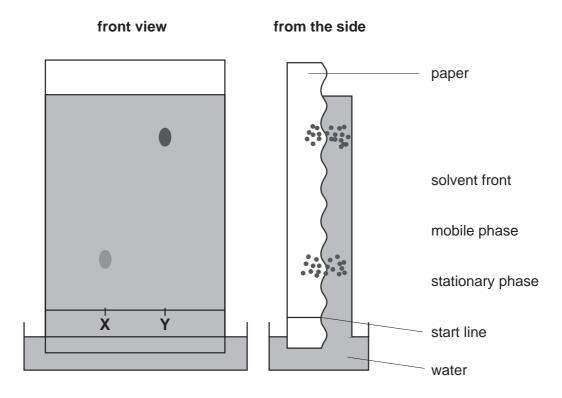
[Total: 5]

© OCR 2008 [Turn over

3 Freya works in a laboratory.

She uses this standard procedure to estimate the concentration of an unknown solution by colour matching.

- (a) Choose from the following statements to help you answer the questions.
 - So there is always the same volume of liquid in each test tube.
 - To mix up the solution.
 - So the pipette does not contaminate all the other test tubes.
 - To get a closer match.
 - Because the unknown solution is unlikely to exactly match one of the reference solutions.
 - So it is the same every time.


		qualitative quantitative semi-quantitative	[1]
		Put a ring around the best answer.	
		Choose from the following list.	
	(ii)	Which of the following words best describes the results obtained by using colorimeter?	, a
			[1]
		accreditation accurate chromatography microscope	
		Use one of the following words in your answer.	
	(i)	Suggest why Freya does this.	
b)	Frey	ya then uses a colorimeter to check her results.	
	(iv)	Why does Freya use a standard procedure for this activity?	
			[1]
	` '		
	(iii)	Why is this method unlikely to give Freya an exact result?	[1]
	(ii)	Why did Freya perform step 4?	
	(::)	Why did France is enforced to the	[1]
	(i)	Why did Freya produce four reference solutions, rather than just one?	

© OCR 2008 [Turn over

[Total: 6]

4 Neil uses chromatography to analyse an unknown solution X.

Look at the diagram of Neil's chromatogram.

(a) Label the side-view of Neil's chromatogram.

Use the words next to the diagram.

[3]


- (b) Draw an arrow on Neil's side-view diagram to show the movement of substances between the mobile phase and the stationary phase. [1]
- (c) Neil uses Y as a standard reference solution.

What conclusion can Neil make about X and Y?

Explain your answer.		

[Total: 6]

5 Scientists sometimes use light microscopes when collecting evidence.

(a) Label the picture of the microscope.

Use the following labels.

eyepiece focusing knob lamp objective lens stage [3]

(b) Draw a straight line from each **part** of the microscope to the best explanation of what **job** it does.

part	job
	adjusts the image to make it sharp
eyepiece	
	the part you look through
focusing knob	
	stops the slide moving
lamp	
	supports the slide
objective lens	
	selected to change the magnification
stage	
	lights up the specimen

[Total: 6]

[3]

© OCR 2008 [Turn over

- 6 Ralf uses different techniques to separate samples of substances.
 - (a) Draw a straight line from each method that Ralf uses to its best description.

	method		description	
			the sample is heated to turn it into a vapour	
	paper chromatography			
			measures the intensity of the colour of the sample	
	electrophoresis			
		1	can be used on small biological samples including DNA fragments	
	gas chromatography			٦
			uses a liquid solvent to separate the sample	[3]
(b)	Ralf separates fragmen	its of DNA for th	e Forensic Science Service.	
	This process is called D	NA profiling.		
	Explain two different wa	ays that DNA pr	ofiling can be used.	

END OF QUESTION PAPER

[Total: 6]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.