GCSE

Physics A
 Twenty First Century Science

General Certificate of Secondary Education J635

Mark Schemes for the Units

June 2009

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, GCSEs, OCR Nationals, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2009
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

CONTENTS

GCSE Twenty First Century Science - Physics A (J635)

MARK SCHEMES FOR THE UNITS

Unit/Content Page
Guidance for Examiners 1
A331/01 Modules P1, P2, P3 Foundation Tier 3
A331/02 Modules P1, P2, P3 Higher Tier 9
A332/01 Modules P4, P5, P6 Foundation Tier 16
A332/02 Modules P4, P5, P6 Higher Tier 22
A333/01 Unit 3 Ideas in Context plus P7 Foundation Tier 28
A333/02 Unit 3 Ideas in Context plus P7 Higher Tier 33
Grade Thresholds 38

Guidance for Examiners

Additional Guidance within any mark scheme takes precedence over the following guidance.

1. Mark strictly to the mark scheme.
2. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise.
3. Accept any clear, unambiguous response which is correct, e.g. mis-spellings if phonetically correct (but check additional guidance).
4. Abbreviations, annotations and conventions used in the detailed mark scheme:
/ = alternative and acceptable answers for the same marking point
(1) $\quad=$ separates marking points
not/reject = answers which are not worthy of credit
ignore = statements which are irrelevant - applies to neutral answers
allowlaccept $=$ answers that can be accepted
(words) = words which are not essential to gain credit
words $\quad=$ underlined words must be present in answer to score a mark
ecf $\quad=$ error carried forward
AW/owtte = alternative wording
ORA = or reverse argument
E.g. mark scheme shows 'work done in lifting / (change in) gravitational potential energy'
(1)

> work done $=0$ marks
> work done lifting $=1$ mark
> change in potential energy = 0 marks
> gravitational potential energy $=1$ mark
5. If a candidate alters his/her response, examiners should accept the alteration.
6. Crossed out answers should be considered only if no other response has been made. When marking crossed out responses, accept correct answers which are clear and unambiguous.
7. The list principle:

If a list of responses greater than the number requested is given, work through the list from the beginning. Award one mark for each correct response, ignore any neutral response, and deduct one mark for any incorrect response, e.g. one which has an error of science. If the number of incorrect responses is equal to or greater than the number of correct responses, no marks are awarded. A neutral response is correct but irrelevant to the question.
8. Marking method for tick boxes:

Always check the additional guidance.
If there is a set of boxes, some of which should be ticked and others left empty, then judge the entire set of boxes.
If there is at least one tick, ignore crosses. If there are no ticks, accept clear, unambiguous indications, e.g. shading or crosses.
Credit should be given for each box correctly ticked. If more boxes are ticked than there are correct answers, then deduct one mark for each additional tick. Candidates cannot score less than zero marks.
E.g. If a question requires candidates to identify a city in England, then in the boxes

Edinburgh	
Manchester	
Paris	
Southampton	

the second and fourth boxes should have ticks (or other clear indication of choice) and the first and third should be blank (or have indication of choice crossed out).

Edinburgh			\checkmark			\checkmark	\checkmark	\checkmark	\checkmark	
Manchester	\checkmark	\times	\checkmark	\checkmark	\checkmark				\checkmark	
Paris				\checkmark	\checkmark		\checkmark	\checkmark	\checkmark	
Southampton	\checkmark	\times		\checkmark		\checkmark	\checkmark		\checkmark	
Score:	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	NR

A331/01 Modules P1, P2, P3 Foundation Tier

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Question} \& \multicolumn{2}{|l|}{Expected Answers} \& Marks \& Rationale

\hline \multirow[t]{3}{*}{2} \& a \& \& \multirow[b]{2}{*}{They have studied the radiation from these stars.} \& \& \multirow[t]{3}{*}{1

1} \& \multirow[t]{2}{*}{Accept any clear and unambiguous response.}

\hline \& \& \& \& \checkmark \& \&

\hline \& b \& i \& ring around thousands of millions \& \& \& Accept any clear and unambiguous response.

\hline \& \& ii \& ring around thousands of millions \& \& 1 \& Accept any clear and unambiguous response.

\hline \& c \& \& Milky Way \& \& 1 \& Phonetically correct spelling acceptable.

\hline \& \& \& Total \& \& 4 \&

\hline
\end{tabular}

Question			Expected Answers	Marks	Rationale
4	a		ring around last option $\frac{1800}{9500} \times 100$	1	Accept any clear and unambiguous response.
	b		second distance energy number (either order)	4	1 mark for each correct answer. first 2 answers must be in the order given.
	c		ring around gives you tan ring around Generates Vit D	2	Accept any clear and unambiguous response.
			Total	7	

A331/02 Modules P1, P2, P3 Higher Tier

Question			Expected Answers	Marks	Rationale
4	a		$\begin{array}{ll}\text { ring around last option } & \frac{1800}{9500} \times 100\end{array}$	1	Any clear and unambiguous response
	b		second (1) distance (1) $\left.\begin{array}{l}\text { number (1) } \\ \text { energy (1) }\end{array}\right\}$ either order	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept 'minutes' or 'hours' or 'time interval' Not "time" on its own accept range or length Allow amount instead of number Not accept Size of photon. accept frequency/wavelength NOT colour not power
	c	i	Andrew	1	Allow Edwin
		ii	Clarissa	1	
		iii	Amy	1	
			Total	8	

Question		Expected Answers	Marks	Rationale
5	e	$\left.\begin{array}{\|c\|c\|}\hline \begin{array}{c}\text { Source and use } \\ \text { Americium } 241 \text { used } \\ \text { in Smoke alarms }\end{array} \\ \text { to image the inside } \\ \text { of humans }\end{array}\right]$long half life and medium penetration	3	one mark per line
		Total	10	

A332/01 Modules P4, P5, P6 Foundation Tier

Question		Expected Answers	Marks	Rationale
$\mathbf{1}$	a	i	$\begin{array}{l}\text { line from 0,0 to 1.5,30 (1) } \\ \text { line is straight (1) }\end{array}$	3
horizontal line along 30m/s (1)				

Check line appears to have been drawn by a ruler, as a rule of

thumb the line should go through (10, 0.5) and (20, 1.0).

lgnore anything after 5.5 minutes, allow ecf from wrong first mark

as long as horizontal line is 4 mins long\end{array}\right]\)

Question		Expected Answers		Marks	Rationale
$\mathbf{2}$	\mathbf{a}				

| Question | | Expected Answers | Marks | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{3}$ | \mathbf{a} | | | | |

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{Question} \& Expected Answers \& \& Marks \& Rationale \\
\hline 4 \& a \& i \& C (1) \& \& 1 \& \\
\hline \& \& ii \& B (1) \& \& 1 \& \\
\hline \& \& iii \& 16(p) (1) \& \& 1 \& pence not needed but \(£ 16\) etc gains zero \\
\hline \& b \& i \& \begin{tabular}{l}
reduced (1) \\
increased (1)
\end{tabular} \& \& 2 \& \\
\hline \& C \& ii

i \& | a transformer works with alternating voltages a transformer is made of two coils of wire on an iron core |
| :--- |
| 3 (1) | \& \checkmark

\checkmark \& 2

1 \& One mark for each box correctly ticked then lose one mark for each additional tick

\hline \& \& ii \& 0.4 (1) \& \& 1 \& Unit not needed but incorrect unit will score zero

\hline \& \& \& Total \& \& 9 \&

\hline
\end{tabular}

Question			Expected Answers	Marks	Rationale
6	a	I	radio infrared light	2	all 3 correct 2 marks 1 or 2 correct 1 mark
		ii		2	mark lines from left hand boxes. if more than one line from a left hand box then wrong all 3 correct 2 marks 1 or 2 correct 1 mark
	b	i	0 and 1s (1) decodes (1)	2	
		ii	digital signals usually have higher quality	1	
			Total	7	

| Question | | Expected Answers | Marks | |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{7}$ | \mathbf{a} | frequency or wavelength (1) | 1 | either answer is correct |
| | \mathbf{b} | speed (1) | 1 | |
| | | Total | $\mathbf{2}$ | |

| Question | | Expected Answers | Marks | |
| :--- | :--- | :--- | :--- | :---: | :--- |
| $\mathbf{8}$ | \mathbf{a} | amplitude (1)
 bright (1)
 constructive (1) | 3 | three independent marks |
| | b | diffraction (1) | 1 | |
| | | Total | 4 | |

A332/02 Modules P4, P5, P6 Higher Tier

| Question | | Expected Answers | Marks | | |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{1}^{*}$ | a | | | | |

Question			Expected Answers		Marks	Rationale
2	a	i	1.28 (1)		1	accept 1.3
		ii	0.6 (1)		1	
	b	i	$\begin{aligned} & 22400(1) \\ & \mathrm{kg} \mathrm{~m} / \mathrm{s}(1) \end{aligned}$		2	
		ii	2240/Error carried forw answer to part b(i) $\div 10$ N/Newton(s) (1)		2	allow 2240 irrespective of answer part b(i), otherwise: if $b(i)$ is 19600 answer is 1960 if $b(i)$ is 42000 answer is 4200 if $b(i)$ is 61600 answer is 6160
		iii	the force x the time		1	Any additional ticks lose the mark
			Total		7	

Question		Expected Answers	Marks		
$\mathbf{3}$	\mathbf{a}	\mathbf{i}	double (1) Rationale		
		ii	A half of (1)	1	
	\mathbf{b}	$60000(1)$ J (1)	2	accept 60 kJ accept joules accept Nm	
		Total	$\mathbf{4}$		

Question			Expected Answers	Marks	Rationale
5	a	i	induction (1)	1	
		ii	$\begin{aligned} & \hline \text { C (1) } \\ & \text { B (1) } \\ & \text { B (1) } \\ & \text { A (1) } \end{aligned}$	4	
	b		potential difference (1) (same/opposite (no mark)) opposite (1) negative positive (1)	3	Each mark independent of the other marks - marks are awarded for $1^{\text {st }}, 3^{\text {rd }}$, and $4^{\text {th }}$ sentences, both required in correct order for the mark
			Total	8	

| Question | | Expected Answers | Marks | Rationale |
| :--- | :--- | :--- | :--- | :---: | :---: |
| $\mathbf{6 *}^{*}$ | a | amplitude (1)
 bright (1)
 constructive (1) | 3 | Each mark independent of the other marks |
| | b | diffraction (1) | 1 | |
| | | Total | 4 | |

A333/01 Unit 3 Ideas in Context plus P7 Foundation Tier

Question			Expected Answers			Marks	Rationale
2	a	i	In order left to right cloud of gas; protostar; (Sun now) red giant; white dwarf;			$\begin{aligned} & 1 \\ & 1 \end{aligned}$ $\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	
		ii	supernova; neutron star/black hole;			$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Accept RED SUPER GIANT
	b		convection/convective (zone)			1	accept radiative (zone)
	C	i	hydrogen			1	
		ii	hydrogen			1	
		iii	carbon; oxygen;			$\begin{aligned} & 1 \\ & 1 \\ & \hline \end{aligned}$	accept nitrogen
		iv	very high pressures needed iron has a large nucleus	\checkmark \checkmark	(1) (1)	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
		V	Lead/Uranium			1	
			Total			14	

Question			Expected Answers	Marks	Rationale
3	a	i	A closer than B	1	
		ii		1	
	b		Advantage idea of atmosphere in the way; allows use of different parts of spectrum; Disadvantage cost of launch/setting up/maintenance/repair; uncertainties of space program	$\max 1$ $\max 1$	allow clearer image owtte owtte
	c	i	$1.5(\pm 0.1)$	1	
		ii	$\begin{aligned} & 5(\pm 1) ; \\ & \text { days; } \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	
	d	i	observed brightness/how bright it looks	1	

Question			Expected Answers			Marks	Rationale
3	d	ii				2	
			size of star	\checkmark	(1)		
			temperature of star	\checkmark	(1)		
	e	i	parsecs;			1	
			megaparsecs;			1	
		ii	light year			1	
			Total			13	

Question			Expected Answers	Marks	Rationale
4	a	i	light pollution/smoke/air pollution	1	do not allow 'pollution' unqualified
		ii	$p=1 \div 6.2$ OR 0.16(129..)	1	allow 0.2 if correct working shown.
		iii	(eyepiece lens) more (powerful)	1	do not allow 'stronger'
	b		cost/construction issues eg access/flat land; environmental impact; social impact/effect on local communities; working conditions/access for staff/amenities for staff;	any 2	
	c	i	curved mirror; parallel rays coming to a point (focus);	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Independent marks so can still get the $2^{\text {nd }}$ mark if they have not drawn a curved mirror eg parallel rays passing through a lens and brought to focus.
		ii	collect light/radiation; produce a brighter/more detailed/sharper/clearer image; to see faint sources/distant sources; reduces diffraction;	any 2	allow 'rays' better image is too vague for credit.
	d		more precise/accurate; continuous control eg can track for 24 hours; easier to find star/point telescope; comfort/cost arguments eg do not have to travel to remote locations/allows telescopes in space; QWoC - two ideas, clear expression	any 2	allow easier to process data allow networking computers if astronomical purpose explained ignore 'human error' as it is insufficient ideas do not have to be correct but should be relevant. Two relevant but not necessarily correct ideas are required for the QoWC mark.
	e		high cost; pooling/sharing expertise;	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	owtte owtte ignore sharing data/information
			Total	14	

A333/02 Unit 3 Ideas in Context plus P7 Higher Tier

Question			Expected Answers	Marks	Rationale
1	a		parallel circuit; wires labelled overhead and rail (on opposite sides of resistor. Must be parallel circuit); power supply and tram(s) correct symbol eg	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	Ignore additional parallel lines that short the circuit allow power supply symbols: $f_{1}-\mid+H_{1}-f_{1} \cdots 1-00$ NOT ONO- ie not ac supply allow a box labelled 'power supply' accept a variable resistor symbol for trams
	b		1,100,000	1	
	c	i	idea of magnet and coil moving relative to each other; voltage induced across coil; a.c. wave form sketched	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	allow 'converts kinetic energy (to electrical energy)' for the movement mark. award no marks for a transformer explanation do not accept 'induced current' a.c. graph must show positive and negative voltage (allow current) Axes not necessarily labelled.
		ii	more efficient/less energy loss/easier to transmit/distribute/more economical; easier to generate/produce; can change voltage/current or use transformer;	2	accept 1 plus explanation eg less energy loss since high voltage $=2$ marks ignore 'safety' ideas do not accept 'travel' 'transport' 'send' for 'transmit' do not allow 'can convert ac to dc'

Question		Expected Answers	Marks	
\mathbf{d}	i	PE= 850,000x20 or 17,000,000 J;	1	
			links PE to KE; $\mathrm{v}^{2}=17,000,000 /(0.5 \times 85,000)$ $\mathrm{v}=20$	1

Question			Expected Answers	Marks	Rationale
2	a	i	light pollution/smoke/air pollution	1	do not allow 'pollution' unqualified
		ii	$p=1 \div 6.2$ OR 0.16(129..)	1	allow 0.2 if correct working shown.
		iii	(eyepiece lens) more (powerful)	1	do not allow 'stronger'
	b		cost/construction issues eg access/flat land; environmental impact; social impact/effect on local communities; working conditions/access for staff/amenities for staff;	any 2	Ignore 'safety of construction' ideas
	c	i	curved mirror; parallel rays coming to a point (focus);	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	Independent marks so can still get the $2^{\text {nd }}$ mark if they have not drawn a curved mirror eg parallel rays passing through a lens and brought to focus.
		ii	collect light/radiation; produce a brighter/more detailed/sharper/clearer image; to see faint sources/distant sources; reduces diffraction;	any 2	allow 'rays' do not accept 'better' image
	d		more precise/accurate; continuous control eg can track for 24 hours; easier to find star/point telescope; comfort/cost arguments eg do not have to travel to remote locations/allows telescopes in space; QWoC - two ideas, clear expression	any 2	allow easier to process data allow networking computers if astronomical purpose explained ignore 'human error' as it is insufficient ideas do not have to be correct but should be relevant. Two relevant but not necessarily correct ideas are required for the QWoC mark.
	e		high cost; pooling/sharing expertise/resources;	1 1	owtte owtte ignore sharing data/information
			Total	14	

Question			Expected Answers	Marks	Rationale
3	a		In order left to right: gas cloud/nebula; protostar; (Sun now) red giant; white dwarf;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	accept 'hydrogen cloud' 'dust cloud', 'gases' and 'dust and gas' are insufficient accept brown/black dwarf
	b		(giant star now) red supergiant; supernova; neutron star/black hole	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	diagrams not needed marks are for sequence not for position so all three in correct order $=3$ marks any 2 in correct order $=2$ marks 1 in the correct position = 1 mark accept super red giant for red supergiant;
	C	i	red giant/supergiant	1	
		ii	carbon; nitrogen; oxygen;	any 2	allow neon; silicon; magnesium; iron, beryllium accept correct symbols
		iii	helium	1	
		iv	nuclei contain protons; (protons/nuclei) repel each other; in nuclear fusion nuclei collide/in nuclear fusion repulsive force must be overcome; high gravity creates high pressure/high temperature; high pressure/high temperature needed to overcome (repulsive) force/produce collisions;	any 4	ignore references to the strong nuclear force
			Total	15	

Question			Expected Answers	Marks	Rationale
4	a	i	recognisable attempt at diagram to illustrate parallax with Earth, Star, Sun and angle labelled (even if incorrect angle); base of triangle is the diameter (or radius) of Earth's orbit (do not need to have drawn the line); parallax angle correctly labelled;	1 1 1	eg or
		ii	5	1	
		iii	avoids atmospheric distortion/refraction/turbulence/can use additional parts of spectrum/increases the size of baseline;	1	do not accept 'interference/affects' or 'light pollution' unqualified or 'no atmosphere' unqualified. accept atmosphere absorbs some radiation
	b	i	10^{3} or 1000	1	If no answer provided accept construction on graph
		ii	graph gives Luminosity (intrinsic brightness); measure/use observed brightness; comparing luminosity and observed brightness gives distance;	$\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$	
	c		Curtis-Shapley about whether nebula within milky way or separate galaxies; Hubble looked at Cepheid variables in nebula; found more distant than any stars in galaxy; hence nebula was a separate galaxy;	any 3	$1^{\text {st }}$ marking point relates to the question/debate accept debate about more than one galaxy This $4^{\text {th }}$ marking point relates to Hubble's conclusion from the evidence.
			Total	12	

Grade Thresholds

General Certificate of Secondary Education
Physics A (Specification Code J635)
June 2009 Examination Series
Unit Threshold Marks

Unit		Maximum Mark	A*	A	B	C	D	E	F	G	U
A331/01	Raw	42	N/A	N/A	N/A	29	24	20	16	12	0
	UMS	34	N/A	N/A	N/A	30	25	20	15	10	0
A331/02	Raw	42	36	32	26	21	17	15	N/A	N/A	0
	UMS	50	45	40	35	30	25	23	N/A	N/A	0
A332/01	Raw	42	N/A	N/A	N/A	28	24	20	17	14	0
	UMS	34	N/A	N/A	N/A	30	25	20	15	10	0
A332/02	Raw	42	28	24	20	16	12	10	N/A	N/A	0
	UMS	50	45	40	35	30	25	23	N/A	N/A	0
A333/01	Raw	55	N/A	N/A	N/A	26	21	17	13	9	0
	UMS	100	N/A	N/A	N/A	60	50	40	30	20	0
A333/02	Raw	55	36	28	21	14	9	6	N/A	N/A	0
	UMS	100	90	80	70	60	50	45	N/A	N/A	0
A339	Raw	40	33	30	26	23	19	15	12	9	0
	UMS	100	90	80	70	60	50	40	30	20	0
A340	Raw	40	33	31	28	25	21	18	15	12	0
	UMS	100	90	80	70	60	50	40	30	20	0

A339/A340 (Coursework) - The grade thresholds have been determined on the basis of the work that was presented for award in June 2009. The threshold marks will not necessarily be the same in subsequent awards.

Specification Aggregation Results

Overall threshold marks in UMS (ie after conversion of raw marks to uniform marks)

	Maximum Mark	A*	A	B	C	D	E	F	G	U
$\mathbf{J 6 3 5}$	300	270	240	210	180	150	120	90	60	0

The cumulative percentage of candidates awarded each grade was as follows:

	A*	A	B	C	D	E	F	G	U	Total No. of Cands
J635	21.3	49.0	77.5	94.8	99.0	99.8	100.0	100.0	100.0	15349

15620 candidates were entered for aggregation this series
For a description of how UMS marks are calculated see:
http://www.ocr.org.uk/learners/ums results.html
Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

