

GENERAL CERTIFICATE OF SECONDARY EDUCATION TWENTY FIRST CENTURY SCIENCE PHYSICS A

A332/01

Unit 2: Modules P4 P5 P6 (Foundation Tier)

Candidates answer on the question paper A calculator may be used for this paper

OCR Supplied Materials:

None

Other Materials Required:

- Pencil
- Ruler (cm/mm)

Friday 19 June 2009 Morning

Duration: 40 minutes

Candidate Forename							Candidate Surname			
Centre Numb	er						Candidate N	umber		

INSTRUCTIONS TO CANDIDATES

- Write your name clearly in capital letters, your Centre Number and Candidate Number in the boxes above.
- Use black ink. Pencil may be used for graphs and diagrams only.
- Read each question carefully and make sure that you know what you have to do before starting your answer.
- Answer all the questions.
- Do not write in the bar codes.
- Write your answer to each question in the space provided, however additional paper may be used if necessary.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 42.
- A list of physics equations is printed on page two.
- This document consists of 16 pages. Any blank pages are indicated.

TWENTY FIRST CENTURY SCIENCE EQUATIONS

Useful Relationships

Explaining Motion

$$speed = \frac{distance \ travelled}{time \ taken}$$

$$momentum = mass \times velocity$$

$$change \ of \ momentum = resultant \ force \times time \ for \ which \ it \ acts$$

$$work \ done \ by \ a \ force = force \times distance \ moved \ by \ the \ force$$

$$change \ in \ energy = work \ done$$

$$change \ in \ GPE = weight \times vertical \ height \ difference$$

$$kinetic \ energy = \frac{1}{2} \times mass \times [velocity]^2$$

Electric Circuits

$$resistance = \frac{voltage}{current}$$

$$\frac{V_p}{V_e} = \frac{N_p}{N_e}$$

energy transferred = power × time

power = potential difference × current

efficiency =
$$\frac{\text{energy usefully transferred}}{\text{total energy supplied}} \times 100\%$$

The Wave Model of Radiation

wave speed = frequency × wavelength

3 BLANK PAGE

Question 1 starts on page 4.

PLEASE DO NOT WRITE ON THIS PAGE

Answer all the questions.

- **1** Ann is driving along the motorway.
 - (a) (i) Ann started her journey by going onto the motorway.
 - Ann increased her speed steadily from 0 m/s to 30 m/s in 1.5 minutes.
 - She then continued at a constant speed of 30 m/s for the next 4 minutes.

Complete the **speed-time** graph to show these parts of Ann's journey.

[3]

(ii) Ann travelled a total of 100 kilometres on the motorway. It took her 2 hours.

What was her average speed?

Put a (ring) around the correct number **and** a (ring) around the correct unit.

0.02	50	98	102	200
h/km	km/	h	m/s	mph

[2]

(b) This graph shows the distance-time graph for Ann's Journey after she left the motorway.

Write down the letter **A**, **B**, **C** or **D** of the part of the graph which shows when:

Ann is stationary	[1]
Ann is travelling at her fastest speed	[1]
Ann is returning towards where she started	[1]
	[Total: 8]

2 Bobby is learning to snowboard with his father.

(a) E	3obby	starts	off by	climbing	some steps	to t	he top	of the	slope.
-------	-------	--------	--------	----------	------------	------	--------	--------	--------

Which of the following statements are correct?

Put ticks (\checkmark) in the boxes next to the **two** correct statements.

Bobby's weight is increasing.	
Bobby's dad is doing all the work.	
Bobby is doing work against gravity.	
Bobby's gravitational potential energy increases.	

[2]

(b) Bobby and his dad snowboard down the slope.

Bobby is holding his dad's hand.

Bobby's dad has a much larger mass than Bobby.

Which of the following statements are true?

Put a tick (\checkmark) in the **true** box or the **false** box for each statement.

	true	false
Bobby has the same kinetic energy as his dad.		
Bobby's kinetic energy increases as he goes faster.		
Bobby's dad goes faster because he is heavier.		

[2]

	3	Alice	is	walking	with	her	backpack
--	---	-------	----	---------	------	-----	----------

There are 3 vertical forces acting on Alice and her backpack.

- **A** her weight
- **B** the weight of her backpack
- C the reaction force upwards from the ground

(a) What is the resultant downward force on Alice?

Put a tick (\checkmark) in the box next to the correct answer.

[1]

(b) Complete the following sentences about the forces involved when Alice is walking.

Choose the **best** words from the list.

Use a different word for each sentence.

friction gravity interaction opposite reaction the same

Alice's back foot produces a backward force, which pushes against the ground.

This causes a force from the ground due to

The two forces are the same size and have directions that are

These two forces are called a pair of forces.

[3]

[Total: 4]

Turn over

4 (a) These three labels were found on 3 different devices that use electricity.

110\	/ a.c. 50 Hz		230V a.c. 50	Hz	5V d.c.
	2000W		3000W		10W
	Α		В		С
(i)	Which appliance	A , B or C u	ıses a battery fo	its power s	upply?
(ii)	Which appliance	A , B or C u	uses the mains v	oltage in the	UK?
(iii)	Device A uses 2	kWh of ene	rgy.		
	Electricity costs	8p per kilow	att hour.		
	How much did it	cost to use	device A?		
	How much did it	cost to use		t =	
) Thi	How much did it		cos		
) Thi		on the trans	cos former used for	a laptop cor	
) Thi		on the trans	cos former used for 230V 50Hz	a laptop cor	
) Thi		on the trans	cos former used for 230V 50Hz	a laptop cor	
) Thi		on the trans Input: Output:	cos sformer used for 230V 50 Hz 11V 400 m	a laptop cor	
	s label was found	on the trans Input: Output:	cos sformer used for 230V 50 Hz 11V 400 m	a laptop cor	
-	s label was found Complete the se	on the trans Input: Output:	cos sformer used for 230V 50Hz 11V 400 m out the transform	a laptop cor	nputer.

[2]

The transformer has the current.

(ii)	The following	statements	are about	transformers.
------	---------------	------------	-----------	---------------

Put ticks (\checkmark) in the boxes next to the **two** correct statements.

A transformer has a magnet which spins around next to a coil of wire.	
A transformer always reduces the size of the voltage.	
A transformer works with alternating voltages.	
A transformer is made of two coils of wire on an iron core.	
A transformer works with direct current.	[2]

(c) The circuit diagram shows a circuit that can be used to measure the current and voltage produced by the transformer.

(i) Where should the voltmeter be placed, at position 1, 2, 3 or 4?[1]

(ii) An ammeter connected at position 1, reads 0.4 amps.

What would an ammeter connected at position 4 read?[1]

[Total: 9]

5 This question is about the electrical energy used by a kettle.

(a)	Energy	is	transfer	red	in	the	kettle
-----	--------	----	----------	-----	----	-----	--------

Which of the following statements are true about the energy transfer?

Put a tick (\checkmark) in the box next to each correct statement.

	[2]
All the energy transferred to the kettle heats the water.	
The energy transferred increases the voltage across the kettle.	
The power of the kettle is the rate at which energy is transferred to the kettle.	
When electric charge flows through the kettle, energy is transferred to the kettle.	

(b)	The kettle	has a	nower	rating	of	2kW
٦	\mathbf{v}_{I}	THE RELIE	nas a	POWE	raung	OI	ZIVV.

The kettle takes 3 minutes to boil some water.

Which **two** of the calculations are correctly working out the energy used?

Put ticks (\checkmark) in the boxes next to the **two** correct calculations.

$$2000 \times 3 \div 60 = 100 \,\text{kWh}$$

$$2 \times 3 = 6J$$

$$2 \times 3 \div 60 = 0.1 \text{ kWh}$$

[2]

[Total: 4]

6 Matteo is watching an analogue television and using a remote control.

(a) Matteo's television uses three types of electromagnetic radiation.

infrared light radio

(i) Put these three types of radiation in the correct places in the spectrum.

		microwave			ultraviolet	X-ray	
--	--	-----------	--	--	-------------	-------	--

[2]

(ii) The lists show the type of electromagnetic wave and the job it does.

Draw a **straight** line from each **type of wave** to the correct **job**.

Each type of wave must be joined to a different job.

type of wave	job
infrared waves	carry picture and sound information to the TV
light waves	carry picture information from TV to person
radio waves	carry information from remote control to the TV

[2]

(b)	The remote control sends digital signals to the television.					
	(i)	i) Complete the sentences by choosing the best words from this list.				
		Use a different word for each sentence.				
		decodes				
		diffracts				
		0 and 1 s				
		radio waves				
		sound waves				
		transmits				
		The remote control sends information as digital codes.				
	The digital signal is made up of					
	The television the signal to produce a copy of the original information.					
		[2]				
	(ii) What is the advantage of a digital signal compared to an analogue signal?					
Put a tick (\checkmark) in the box next to the correct advantage.						
		digital signals travel faster				
		digital signals usually have higher quality				
		digital signals are smaller [1]				
		[Total: 7]				

7 Sometimes a rainbow can be seen.

The rainbow is made up of different colours of light.

Use the following list of words to help you answer the questions:

á	mplitude	force	frequency	sound	speed	wavelengt	h
(a)	Name a propert	y, from this	list, which is alway	ys different fo	r each colour	of light.	
							[1]
(b)	Which property, through space?	, from this I	list, is always the	e same for all	of the colou	ırs of light,	travelling
							[1]
							[Total: 2]

8 Miss Curie demonstrates the interference of light waves to her class by shining a laser beam through two narrow slits. This produces a pattern of bright and dark areas on a screen.

(b) Which word in the list means that the waves spread out from the slits?

This is called interference.

[1]

[Total: 4]

[3]

END OF QUESTION PAPER

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.