

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

General Certificate of Secondary Education

APPLIED SCIENCE: DOUBLE AWARD

Science for the needs of society

FOUNDATION TIER

Wednesday 14 JUNE 2006

Candidates answer on the question paper.

Calculators may be used.

Additional materials:

Pencil

Ruler (cm/mm)

149	97	4	48	82	2/()1

Morning 1 hour 30 minutes

Candidate Name		
Centre Number	Candidate Number	

TIME 1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES

- Write your name, Centre number and candidate number in the boxes above.
- Answer all the questions.
- Write your answers in the spaces provided on the question paper.
- Read each question carefully and make sure you know what you have to do before starting your answer
- Do not write in the bar code. Do not write in the grey area between the pages.
- **DO NOT** WRITE IN THE AREA **OUTSIDE** THE BOX BORDERING EACH PAGE. ANY WRITING IN THIS AREA WILL NOT BE MARKED.

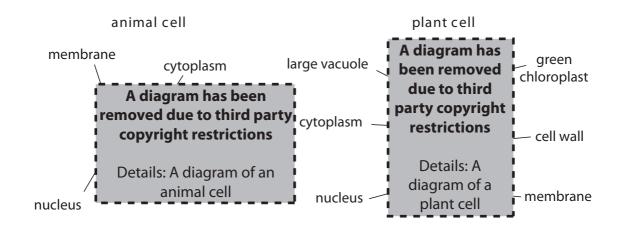
INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The marks allocated and the spaces provided for your answers are a good indication of the length of answers required.

FOR EXAMINER'S USE				
1	12			
2	9			
3	12			
4	14			
5	10			
6	13			
TOTAL	70			

Answer all the questions.

- 1 Charlie designs clothes.
 - (a) Look at the following list of materials that she uses.


Show whether each one is obtained from an animal, a plant or is artificial.

Put ticks (\checkmark) in the correct boxes.

	animal	plant	artificial
cotton			
leather			
nylon			
wool			

[4]

(b) Look at the diagrams of an animal cell and a plant cell.

i)	Write down	three things that ar	e in both	animal	and r	olant cel	ls.

1	 	 	

(1	•	ys that a plant cell is different from a		
	3			
			[2]
(c) C	harlie wants to design n	ew items of clothing.		
S	he looks at three differe	nt fabrics with a magnifying glass.		
	fabric A	fabric B	fabric C	
((i) Suggest which fabric	Charlie should choose to keep you	cool.	
	Explain your answer.			
			[2]
(1		Charlie should choose to make water	erproof clothing.	
	Explain your answer.			
				•••
				 :01

[Total: 12]

2	Low density	poly(ethene)	IDPE	ic a	nlactic
_	LOW GENSILY	poly(ethene)	, LUF⊑,	is a	piastic.

It was discovered in 1933 by Eric Fawcett.

(a) What is the common name for this plastic?

Put a (ring) round the correct answer.

ethanol polygon polythene methane

(b) Twenty years later, Karl Zeigler developed high density poly(ethene), HDPE.

Look at the table.

It shows the properties of the two different materials.

property	LDPE	HDPE
stiffness	flexible	rigid
density (g cm ⁻³)	0.92	0.96
strength when pulled (MN m ⁻³)	15	29
stretch before breaking	6 times original length	3 times original length
effect of heat	softens at 90 °C	no change below 200 °C

	carbon helium lead sulfur					
	Put a ring round the correct answer.					
	Which of the following elements is LDPE most likely to contain?					
(iii)	LDPE is made from an organic chemical.					
	[2]					
	Explain why it is better than HDPE.					
(ii)	Cling film that is used to wrap food is made from LDPE.					
	[2]					
	Explain why it is better than LDPE.					
(1)	Plastic kettles that are used to boil water are made from HDPE.					
/:\	Plactic kettles that are used to beil water are made from HDDE					

[1]

(c) Surfboards can be made from Glass Reinforced Plastic (GRP).

An image has been removed due to third party copyright restrictions

Details: An image of a man surfboarding

GRP is a composite that contains plastic and glass fibres.

(i)	Explain what is meant by a composite.
	[1]
(ii)	Plastic alone would not be suitable for making surfboards.
	Suggest why a composite material is better.
	[2]
	[Total: 9

3 Dave gets a big electric bill.

He decides to check the meter reading.

Look at Dave's electric meter.

An image has been removed due to third party copyright restrictions

			Detai	Is: An image o				
(a)	Com	plete the reading for	the units of	electricity.				
	LOW	<i>I</i>						
	NOF	RMAL					[1]	
(b)	This	is Dave's electric bill.						
Qua	rte	rly Electricity S	tatemer	nt				
		arges Economy 7						
M ete Numk			Present Reading	Previous Reading	kW h Used	Cost Per kWh (p)	Charge Amount (£)	
32057	7	Night Day	29156 02836	28608 01730	548 1106	2.5 6.0	13.7 66.36	
	Use	the bill to answer the	se question:	S.				
	(i)	The bill is calculated	using units	called kWh.				
		What does kWh stan	d for?					
	(ii)	How many units has	Dave used?				·····	[1]
		night		kWh				
		day			. kWh			[1]
	(iii)	Suggest and explain	how Dave o	ould reduce th	e cost of his e	electricity.		
				••••••	•••••			••••

	7	
(c)	Dave reduces the amount of electricity he uses.	
	His next bill shows 500 kWh used during the day.	
	The cost of daytime electricity is 6p per kWh.	
	Calculate how much Dave will pay for his daytime electricity.	
	You are advised to show how you work out your answer.	
	cost of Dave's electricity £[3]	
(d)	Dave looks at the cost of using three different appliances.	
	Put a ring round the appliance that costs the most to use for 30 minutes.	
]	
	An image has been removed due to third party copyright restrictions	
	Details: An image of a 1 KW iron, a 100 W light bulb and a 750 W hairdryer	
	<u> </u>	[1]
(e)	Dave has an electric kettle.	נין
(e)	Dave has an electric kettle.	
	It has this label on the back.	
	Current 8.6 amps An image has been removed due to third	

Current	8.6 amps
Voltage	230 volts

Calculate the power of Dave's kettle.

You must:

- write down the correct formula
- show all of your working.

restrictions

Details: An image of a kettle

	W	,	r -> '	٦
answer	 vv	/	15	ı

[Total: 12]

[Turn over

4 Sulfur forms in large blocks around some volcanoes.

Local people collect it and sell it to the chemical industry.

Details: An image of a man collecting sulfur

Look at the data about sulfur.

sulfur data		A photograph has
formula	S ₈	been removed due to third party copyright
melting point	113 °C	restrictions
boiling point	445 °C	Details: A photograph of
density	2 g cm ⁻³	some sulfur

(a)	Use	the data to answer the following questions.
	(i)	The people carry the sulfur as solid blocks.
		The daytime temperature near the volcano is around 20 °C.
		How does the information show that sulfur is a solid at this temperature?
		[2
	(ii)	When it reaches the chemical factory, the sulfur is heated to 200 °C and transported as a liquid through pipes.
		How does the data show that sulfur is a liquid at 200 °C?
		[2]
	(iii)	How many atoms are in one molecule of sulfur?

number of atoms[1]

(b)	Finish the sentences about sulfur b	y putting a	ring roun	d the correct	words.	
	Sulfur is an example of					
	an element	a comp	ound	a composit	е	
	Sulfur is an example of					
	a metal	a non-	metal	an alloy		
						[2]
(c)	The people working near the volcane	oes breathe	in toxic ga	ses that come	e from the sulfur.	
	The boxes show the names and for	mulae of sc	me hazar	dous compou	ınds that contain sul	fur.
	Draw lines to connect the name of	each compo	ound to th	e correct forn	nula.	
	name				formula	
	sulfur trioxide				H ₂ SO ₄	
	sulfuric acid				H ₂ S	
	hydrogen sulfide				SCl ₂	
	sulfur dichloride				SO ₃	
(d)	One of the toxic gases from volcan	oes is sulfur	· dioxide			[3]
()	Sulfur dioxide is made when sulfur			oxygen in th	e air	
	(i) Complete the equations to sho					
	WORD EQUATION	·	•			
	sulfur +		$\rceil \to \lceil$			
	SYMBOL EQUATION					
	S +			$\rightarrow SO_2$		
	3 +			$\rightarrow 30_2$		[3]
	(ii) Put a ring round the part sulfur dioxide.	of the boo	dy that c	ould be dam	naged by breathing	j in
	artery a	trium	ı	olasma	thorax	[1]

[Turn over

[Total: 14]

10 5 Genetic engineering produces genetically modified (GM) crops. The graph shows how the land used for GM crops changed up to 2001. Look at the graph. A graph has been removed due to third party copyright restrictions Details: A graph showing how the land used for GM crops changed up to 2001 in industrial and developing countries (a) The pattern of land use varies between the types of countries. Give one similarity and one difference. similarity (b) The diagrams show how genetic engineering can be done in bacteria. They are in the wrong order. donor DNA plasmid replaced gene inserted bacterium placed gene cut out into bacterium into plasmid into fermenter D Ε

Write down the letters in the correct order.

The first one has been done for you.

E

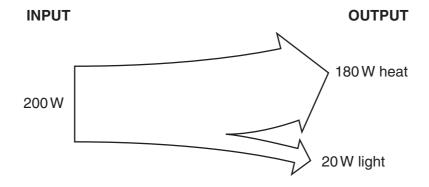
(c) Genetic engineering has potential benefits and ris
--

Look at the table about genetic engineering.

Put a tick (\checkmark) in the correct box to show if each statement is:

- a benefit
- a risk
- neither a benefit or a risk.

The first one has been done for you.


statement	benefit	risk	neither
medical drugs can be made more cheaply	✓		
produces new treatments for disease			
enzymes are used to insert the gene			
inserted genes may have unknown side effects			
medical drugs can be made more quickly			

		[4]
d)	Ethical arguments are sometimes used against genetic engineering.	
	Give an example of an ethical argument against genetic engineering.	
		. [1]
	[Total	: 10]

A farmer sets up a tank for new born chicks.

	noved due to third party copyright restrictions
•	wing chicks in a glass tank with a op of the tank with a metal shade
(a) (i) Look at the boxes below. Draw line between the different parts. parts	es to show the main way the heat energy is transferred how the heat energy is transferred
between the different parts.	,
between the different parts. parts	how the heat energy is transferred
parts from lamp to chicks	how the heat energy is transferred radiation
parts from lamp to chicks through the metal parts of the lamp around the glass tank	how the heat energy is transferred radiation convection

(b)	The farmer finds that the chicks near the sides of the tank are too cold.	
	Suggest ways that the farmer could cut down the amount of heat escaping from the tank.	
		[3]
		[ပ]
(C)	The farmer wants to know how efficient the lamp is at heating the tank .	
	He finds this diagram showing the power inputs and outputs of the lamp.	

Work out the percentage efficiency of the lamp.

efficiency % [2]

Turn over for the remainder of question 6.

(d)	The chick tank is inside a large chicken shed.
	The farmer buys low energy bulbs for the main lights in his chicken shed.
	What are the advantages of using low energy bulbs for lighting?
	[3]
(e)	Suggest a reason why low energy bulbs would not be a good choice for using in the chick tank.
	[1]
	[Total: 13]

END OF QUESTION PAPER

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.