

Examiners' Report June 2014

GCSE Chemistry 5CH3H 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Giving you insight to inform next steps

ResultsPlus is Pearson's free online service giving instant and detailed analysis of your students' exam results.

- See students' scores for every exam question.
- Understand how your students' performance compares with class and national averages.
- Identify potential topics, skills and types of question where students may need to develop their learning further.

For more information on ResultsPlus, or to log in, visit <u>www.edexcel.com/resultsplus</u>. Your exams officer will be able to set up your ResultsPlus account in minutes via Edexcel Online.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>.

June 2014

Publications Code UG040000

All the material in this publication is copyright $\ensuremath{\mathbb{C}}$ Pearson Education Ltd 2014

Introduction

This is the second examination of the Unit C3 paper in the GCSE Science 2011 specification.

The Higher Tier paper assesses grades A* to D and consists of a mixture of question styles, including objective questions, short answer questions, data analysis questions and extended writing style questions.

Students were assessed on their knowledge and understanding of qualitative analysis, quantitative analysis, electrolysis, equilibria and organic chemistry. There were opportunities for them to demonstrate their knowledge and understanding of writing balanced equations and practical work they have carried out throughout this Unit.

The overall impression of the examiners was that the majority of candidates had been very well prepared for the examination, with clear evidence of a sound understanding of many of the key concepts across the topic areas. Many excellent responses were seen, particularly to the more challenging questions, requiring extended writing.

Successful candidates:

- read the questions carefully and answered the questions as they were set;
- understood and used correct scientific terminology;
- could write balanced equations;
- could carry out calculations;
- could recall the procedures and results for testing for ions;
- could give well communicated descriptions and explanations for the electrolysis and for equilibrium reactions.

Less successful candidates:

- did not read the questions carefully and gave answers that were related to the topic being tested, but did not answer the question;
- could not write balanced equations;
- could not carry out calculations;
- had not revised how to test for the ions in the specification;
- confused the electrolysis of brine with that of that of molten sodium chloride.

In future, some candidates need to revise how to write ionic equations. Some candidates would also benefit from working through more questions involving calculations and electrolysis.

The report provides exemplification of candidates' work, together with tips and/or comments for a selection of questions. The exemplification is mainly confined to those questions requiring a more complex response from candidates.

Question 1 (b)

Most candidates gained full credit for showing the correct formulae for both reactants for the hydration of ethene.

Despite the reactants being given in the question, a large number of candidates were unable to recall the formula for ethene. Often the formula of ethane, C_2H_6 , was shown, or C_2H_5 was given. Occasionally, candidates got the reactants and products the wrong way round. Several even got the formula for water wrong. Many candidates attempted to add a hydrocarbon and water to arrive at the product, a method that might have worked, but unfortunately were unable to work out the number hydrogen atoms in ethanol, with the hydrogen atom in the hydroxyl group omitted.

Question 1 (c) (i)

Many candidates were able to gain full credit.

The majority of candidates scored the 2 marks for references to 'same general formula' and 'similar chemical properties'. Often candidates could correctly recall the general formulae for various homologous series.

Often candidates failed to score due to being too vague, referring to 'same properties', 'similar structure', 'similar formula'. In a few cases, confused the definition for an homologous series with that of a hydrocarbon.

(i) Descril	be what is meant by an homologous series .	(2)
Ahomolog	gous Series is a group of compounds	that
all hare	a similar formula this many the	uy have
a Similar	molecular Structure, and have	Ň
Similar	properties.	-1-1-1 H H H H H H H P P P P P P P P P P P P
'	Results Ius Examiner Comments This was a commonly seen incorrect response seen by	
	examiners. The three points made regarding 'similar chemical formula, structure and similar properties' are not specific enough, so this response did not score.	

(i) Describe what is meant by an homologous series .	(2)
The's means that they all share,	ren y
similar properties and all follow the	sant
general formulas	1999 (19

This candidate mentions 'similar properties', but this is too vague, since there is no reference to 'similar chemical properties'. However, the reference to 'same general formula' is correct, so this scored 1 mark only.

(i) Describe what is meant by an homologous series .	
	(2)
A group of compounds all with the same)
general formula and the same functional gra	<i>y</i> 50
that makes them all have much chemica	1
proporties and react in rame Way	

This is a very good example of a fully correct response. There are three creditworthy points made. The response scored the maximum 2 marks.

Question 1 (c) (ii)

This was very well answered on the whole. Most candidates could correctly draw the displayed formula for methanol.

Most incorrect responses showed an C-HO bond for an C-OH, or tried to make the oxygen double bonded, as in C=OH or C=O, as in an aldehyde.

Question 1 (d) (i)

Most candidates could correctly state that the type of reaction which occurs when ethanol changes into ethanoic acid is 'oxidation'. The most common incorrect responses often confused the oxidation process with 'fermentation' or 'reduction'.

Question 1 (d) (ii)

Most candidates typically scored at least 1 of the 2 marks available for 'fizzing and/or 'disappear'. Although, not desirable, 'dissolve' was credited as an alternative to 'disappear'.

The most commonly seen error was for candidates not giving observations, but either mentioning 'gas given off' or simply naming the species formed, hydrogen and/or magnesium ethanoate, or explaining the chemical process. The question specifically asks for what you would **see**, as opposed to an explanation.

magnesis	und see Fizing and bubbling o in and you would see the re reventually dissopeds.	
	Results Plus Examiner Comments A good example of a fully correct response. Marking points 1 and 2 are for the correct references to 'fizzing/bubbling' and 'disappear'.	7
	Examiner Tip Read the question carefully. This is a commonly asked question on the examination, so make sure you write down what is seen , rather than simply naming the chemical products or stating that a gas is given off. You cannot see a gas.	

Question 2 (a) (i)

Many candidates scored full marks for recalling the correct test for iodide ions and the correct result.

Commonly seen errors, which limited the score to 1 mark, included:

- the incorrect reagent, often sodium hydroxide or hydrochloric acid, or an extra reagent was added, coupled with a correct result;
- a correct test stated with no result given;
- a correct test, but failing to mention either yellow or precipitate;
- a correct test, but giving the wrong colour precipitate, namely white or cream.

(i) Solid A is potassium iodide.	1
A small amount of solid A is dissolved in water to form a solution.	
Describe the test to show that the solution of A contains iodide ions.	(2)
Sivernitrate and nitric acid isadded to	the
solution of A. A yellow precipitate will f	DMM,
showing that the sel olition contained is	
ións.	()
Results La Examiner Comments	
Although the word 'solution' is not mentioned and the reagents are not added in the desired order, this is sufficient to cover marking point 1', 'yellow precipitate' scores marking point 2. This scored full marks.	
(i) Solid A is potassium iodide.	-
A small amount of solid A is dissolved in water to form a solution.	

Describe the test to show that the solution of A contains iodide ions.

(2)

sliver mitrate each

Examiner Comments

The candidate mentions the correct reagents and in the correct order. Unfortunately, there is no mention of the correct observation. This response scored 1 mark.

Question 2 (a) (ii)

Many candidates knew how to test for ammonia, namely starting off with the addition of sodium hydroxide solution or by simply heating the solid. However, many did not score full marks, since either the solution was incorrectly tested, or the testing of a gas with red litmus (or action of holding the litmus paper over the mouth of the vessel) was often omitted. Most candidates were able to score the third marking point for the correct colour change of the litmus paper from red to blue. Surprisingly, several candidates got the colours the wrong way round, or confused this test with that for chlorine gas. Occasionally, candidates suggested a flame test for the potassium ions.

Describe the test to show that solid B contains ammonium ions. (3)
The solid B would be heated with sodium
hydroxide the in a test tube. The gas
produced ammonia, would have a
distinctive smell and would turn damp
ted litmus paper blue is it was held
in the mouth of the testinate.
Results Plus Examiner Comments
A very good example where all the marking points are clearly covered, namely adding the correct reagent, testing of the gas with the correct

indicator and the correct colour change.

Question 2 (b)

Most candidates knew the correct results for the addition of sodium hydroxide to aluminium or calcium ions and scored at least 2 marks out of the 3 marks available. Occasionally only 1 mark was scored, since the key words, 'precipitate' or 'white' were omitted.

However, the third marking point was less frequently scored, simply because the addition of 'excess' sodium hydroxide was not clearly stated. Many examiners noted that candidates often incorrectly discussed the use of flame tests to distinguish between the two metal ions.

(b) Sodium hydroxide solution can be used to test for aluminium ions and for calcium ions in solution. Describe the results of these tests for aluminium ions and for calcium ions, explaining how the results distinguish between the two ions. (3) (Total for Question 2 = 9 marks) **Examiner Comments** A good example of a 2 out of 3 marks response. The key term 'excess' (or addition of more) sodium hydroxide has been omitted, so the third marking point was not scored.

Question 3 (b) (ii)

This was generally very well-answered. Most candidates scored the 2 marks available. They used the terms 'hydrophilic' and 'hydrophobic' and correctly described how these parts of the anion attach to water and the grease respectively. Unfortunately, it was noted that although candidates often used these correct terms for the parts of the ion, they often failed to mention the attachment to water or grease. Some candidates drew correctly labelled diagrams and scored both marks. References to the other marking points, namely to the 'lowering of surface tension' or 'soap surrounding the grease', were rarely seen.

Explain how soap anions remove grease marks from clothes during washing with water. (2)contains ck **Examiner Comments** Three of the possible four alternative marking points have been adequately covered, for the 'hydrophobic tail into grease', 'hydrophilic head in the water' and also 'soap anions surround the grease'. This response scored full marks. irere are hi CHODN androu CIXOL ench DO CHIER NACKODPODIC tr On a llr CLOEDN'T LURE odter and dttached (tello o, they detach from the ciothes then the when the water <u>ecults</u> **Examiner Comments**

This was a typical response for 1 mark only. The correct scientific terms have been used, with the hydrophobic part correctly linked to the grease, but the hydrophilic end has not been linked to the water.

Question 3 (c) (i)

Most candidates were able to name the correct carboxylic acid, namely 'propanoic (acid)'. Occasionally, the names of different, incorrect carboxylic acids were given.

Question 3 (c) (ii)

Although there were some very good responses to this question, the majority achieved only 1 mark only for recognising water as a product. Most candidates struggled to write out the correct formula, either structural or molecular, for the ester. In many cases the attempted formula for the ester either contained an alcohol or carboxylic acid group.

Question 3 (d)

The majority of responses were able to score the 1 mark available for an acceptable use of polyesters, typically for 'making clothing'. A number of candidates gave 'plastic bags', which was not specific enough to gain credit. Several incorrectly suggested 'flavourings' or 'fragrances' as a use, namely a use for esters, but not for polyesters.

Question 4 (b)

This question was very poorly answered. Most candidates struggled with writing the ionic equation for neutralisation. It was apparent that very few candidates knew what is meant by an ionic equation, let alone how to write one.

Many wrote the full symbol equation, and in few cases, word equation. Some candidates were able to score 1 mark for the inclusion of the spectator ions, sodium and chloride ions, on both sides of the equation.

Question 4 (c)

Although there were many correct responses seen by examiners, typically for 'phenolphthalein' or 'methyl orange' coupled with their correct colour changes, many candidates incorrectly suggested indicator paper or 'universal indicator' as a suitable indicator. Centres need to stress to candidates that universal indicator solution is not acceptable for titrations.

Common errors were noted by examiners: extremely poor spelling, particularly for phenolphthalein, such that it was not phonetic and could not score. Occasionally, where a correct indicator had gained credit, the mark for the colour change was not scored, since the change was the incorrect way round or 'clear' was incorrectly used instead of 'colourless' when referring to phenolphthalein.

The hydrochloric acid is added from a bur a conical flask. At the end point the indicator changes co	
(i) Give the name of a suitable indicator t	to use in this titration.
pheneulphthalein	
(ii) State the colour change for this indica	tor at the end point. (1)
from pink to	
Results Plus Examiner Comments	Results Plus Examiner Tip
This response mentions 'phenolphthalein' which scored 1 mark for part (i). Unfortunately, the second marking point (pink to colourless) for part (ii) was not awarded, since 'clear' is not equivalent to colourless.	This is a commonly asked question. It is worthwhile learning key indicators and their correct corresponding colour changes. Remember, universal indicator solution should never be used as an indicator for titration experiments.
The hydrochloric acid is added from a bure a conical flask. At the end point the indicator changes co	
(i) Give the name of a suitable indicator t Phenalahthalein	to use in this titration. (1)
(ii) State the colour change for this indica	tor at the end point. (1)
from Calouluss to	Pink
indicator (and spelled	nments 1 mark only for correct correctly) in part (i), but he wrong way round, so

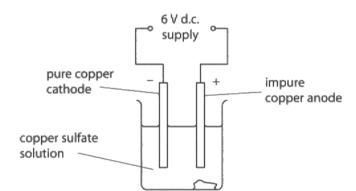
Question 4 (d)

The majority of candidates correctly calculated the correct concentration for the 2 marks available, or at least 1 mark for correctly calculating the Relative Formula Mass for sodium hydroxide. Commonly seen errors included: dividing the Relative Formula Mass (40 g) by the mass (20 g), namely 40/20, as opposed to the other way round, 20/40. Some calculated the mass concentration, 20 g dm⁻³, which gained 1 mark only.

Question 4 (e)

Examiners were impressed by the high quality of responses seen, many scoring the full 3 marks available. It was evident that many candidates were able to use the formulae for calculating moles and concentrations competently. Occasionally, candidates inverted arithmetic or lost marks with powers of ten errors, so were limited to 1 or 2 marks. A few answers gained credit for clearly stating that the reactants were in a ratio 1:1.

$HCI + NaOH \rightarrow NaCI + H_2O$				(3)
Formula	Ratio	Concentration	Volame	molesi
HCL	1	1.25	0.03	0.0375
NaOH	1	1.5	0.025	0.0375
/6	Moles onc k	s Vol	concentration =	. 25 mol
		Results Examiner Comm		


Question 5 (a)

The majority of candidates were able to score the 1 mark available, with references to 'improves resistance to corrosion'. The most common error was to mention 'to prevent rusting' which is clearly only specific to iron and steel. However, this was credited only if the rusting, when mentioned, was specifically linked to iron and steel. Some candidates confused 'corrosive' with 'corrosion'. Several candidates incorrectly referred to 'making the metal stronger' or 'making the metal conduct' or simply repeated the reason already given in stem of the question.

Question 5 (b)

Although there were some excellent responses seen by examiners, gaining the full 3 marks available, the majority of candidates struggled with interpreting the results for the purification of copper by electrolysis in terms of atoms, ions and the redox processes occurring. Marks were generally awarded for stating 'the movement of copper ions from the anode to the cathode' or for a correct reference to 'the difference in the changes in mass (0.2 g) being down to impurities'.

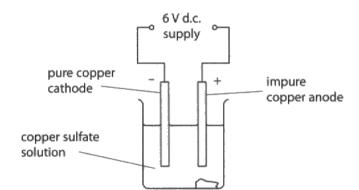
Many answers referred to the change in mass of the anode or cathode, but did not explain this, or extend this sufficiently to explain the mass difference in terms of impurities. Few responses actually made specific reference to the oxidation/atoms losing electrons or reduction/ions gaining electrons at the anode and cathode respectively. Half equations were rarely given. (b) Copper sulfate solution was electrolysed using copper electrodes. The mass of each electrode was determined before it was placed in the solution.

The electrolysis was carried out for a period of time. The electrodes were removed, washed, dried and their masses redetermined.

The table shows the masses of the electrodes before and after electrolysis.

	mass of electrode before electrolysis / g	mass of electrode after electrolysis / g	change in mass
mass of impure copper anode	40.0	35.0	5.0 g decrease
mass of pure copper cathode	10.0	14.8	4.8 g increase

Explain these results.


(3)

Because the copper was attracted to the cathode which indeased the amount of copper in the cathode while as a reduction in the anode copper migrated to the cathede early wat the inpurities.

In this response there is no mention of copper ions or the movement of copper ions, or copper atoms being formed. The impurities are not linked to the 0.2g difference in the mass changes. This response scored 0 marks.

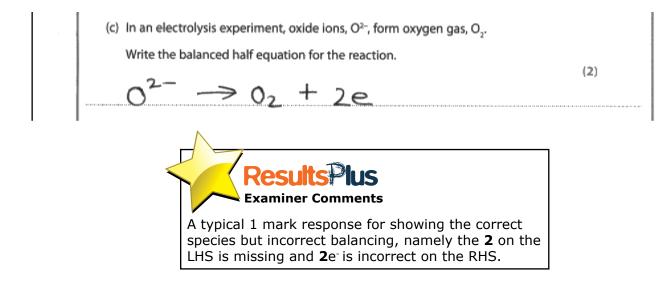
(b) Copper sulfate solution was electrolysed using copper electrodes. The mass of each electrode was determined before it was placed in the solution.

The electrolysis was carried out for a period of time. The electrodes were removed, washed, dried and their masses redetermined.

The table shows the masses of the electrodes before and after electrolysis.

	<u>e</u> ic pic	mass of electrode before electrolysis / g	mass of electrode after electrolysis / g	change in mass
	mass of impure copper anode	40.0	35.0	5.0 g decrease
	mass of pure copper cathode	10.0	14.8	4.8 g increase
	Explain these results.			(3)
	At the anode		oxidisea,meaning.	
		1st ions that enter in	to solution. At the	cathude, electrona
(offered Sic gu brothe sic	acorby Cuzt ions Roin	ningCoppsahaan	heed and an and a second
stick to the cellhools. This means that the anode losu 5 g. of mess because				
	& coppers strigged et, and the carrocle gains they because copper is added wit.			

The processes occurring at the anode and cathode have been discussed in detail. There has been no further discussion of the 0.2g change in mass difference linked to impurities or any mention of movement of ions. This response scored 2 marks.


The electrod	vsis was carried out for a per les were removed, washed, o ows the masses of the electr	fried and their masses rede	
	mass of electrode before electrolysis / g	mass of electrode after electrolysis / g	change in mass
mass of impure copper anode	40.0	35.0	5.0 g decrease
mass of pure copper cathode	10.0	14.8	4.8 g increase
Explain these	e results. 4.8g increase on t	he copper cathoole.	(3)
	was oxidised at		
in solution Solid Copper	and then were a atoms coating the 1 5g and 2g of th	reduced at the This is why cathode was the a	node dereased

A typically seen very good response. Three marking points have been mentioned in this response. The formation of copper ions at the anode/oxidation. The reduction of copper ions at the cathode to form copper atoms. The difference in the change in mass has been correctly linked to impurities. This response scored 3 marks.

Question 5 (c)

This question was very poorly answered by the majority of candidates, with very few candidates scoring the 2 marks available. In cases where 1 mark was scored, it was invariably for showing the correct species on both sides of the equation, but with incorrect balancing, typically for showing only 2 electrons, rather than 4 electrons on the Right Hand Side of the equation. The majority of answers which failed to score, reference to gaining electrons on the Left Hand Side. In some responses this reaction was confused with the oxidation half equation occurring at the anode during the electrolysis of water.

Question 5 (d)

A significant number of excellent answers were noted by the examiners, gaining the maximum 6 marks, Level 3. There was good recognition of the movement of sodium ions and chloride ions to the correct electrodes and the subsequent reduction and oxidation reactions. The use of half equations for the reduction and oxidation processes was seen occasionally. Very few candidates discussed the fact that two chlorine atoms joined to form a chlorine molecule.

Level 2 responses often showed less detail regarding electron transfer following movement of ions to the electrodes. Often candidates incorrectly referred to chlorine ions instead of chloride ions. Some candidates confused the electrolysis of an aqueous solution of sodium chloride / brine with that of molten sodium chloride in the question, despite some detailed explanations, which often limited the answers to Level 2. In some cases, it was disappointing to see atoms with charges or ions going to the wrong electrodes, or confusing the anode with the cathode.

*(d) Sodium chloride is an ionic compound. It contains sodium ions, Na⁺, and chloride ions, Cl⁻. $\rho \mathcal{V}_{2}$ 1 pos When molten sodium chloride is electrolysed, sodium metal and chlorine gas are formed. Describe how the sodium ions and chloride ions in solid sodium chloride are converted into sodium and chlorine by electrolysis. (6) In electrolysis, the sodium ions are attracted towards the Cathode as they contain positive ions. which Converts it into a sodium mercu. The chloride ions are attracted towards the anode as they contain regative ions Which forms a Chlorine gas. Sodium Opes to the Camade because its an a negative electrode and the sodium is ions are near one positive. Chloride ions op to the Cinocle and because its a positive electrode and the Chloride ions are neglative This forms sodium and Chicrine as they are born attracted to the different electrodes Recults **Examiner Comments** This response correctly mentions the movement of sodium

This response correctly mentions the movement of sodium ions and chloride ions to the cathode and anode respectively. The formation of chlorine gas at the anode and sodium metal at the cathode have been discussed. There have been four relevant points made. This response scored 4 marks - Level 2.

(d) Sodium chloride is an ionic compound. It contains sodium ions, Na, and chloride ions, Cl-. When molten sodium chloride is electrolysed, sodium metal and chlorine gas are formed. Describe how the sodium ions and chloride ions in solid sodium chloride are converted into sodium and chlorine by electrolysis. (6)From the Sodium Ions the cottrade of secause epeosite charges attract Rectalysis ide long or pulled Examiner Comments Two correct points have been made, namely the movement of sodium ions to the cathode and chloride ions to the anode. This response scored 2 marks - Level 1. When the sodium chloride is electrolysed sodium ions are attracted to the negatively charged cathode as they are positive. sonalgettitle They are then reduced they gain electrons. The negative emions utbraketed chioride ions are attracted to positively charged anode. They are andised as they lose electrons. **Examiner Comments** The movement of the sodium ions to the cathode and chloride ions to the anode are mentioned. Redox reactions at the electrodes have been discussed, namely chloride ions losing electrons / oxidation and sodium ions gaining electrons / reduction. Overall,

although the answer is relatively concise, there are six relevant points regarding both the electrode processes, so this response is sufficient for Level 3 and scored 6 marks.

Two inert electrodes are used, hepplied with a cument and put into an electrolyte of molten sodium chlorise , where Nat and CC mions are free to more. At the negathis cathode Nat cations are reduced, and gain electrons, to be depented as solid salium atoms. The half equation Na (s). The factium is collected Nary te- ---Ò\$ and used in street Campa and as a coolant in some unan nuclear reactors. Chloride and castered attracted to the anote

where they are maturated attracted to the anone where they are maturated attracted, and lose electrons to form deforine gas molecules. The Math half equation is $2C(-a) \longrightarrow Cl_r(g) + 2e^-$ (hlorine is collected at the anode as a tokic green gas and is used to tract water, produce bleady and to make PVC and other polyments-g

> Results Plus Examiner Comments

This is an excellent example of typical Level 3 response - 6 marks.

The movement of ions to the respective electrodes has been discussed and the electrode processes at the anode and cathode have been described and explained in detail, coupled with detailed halfequations. There are greater than the minimum valid points required for Level 3.

Question 6 (b)

Many responses scored the full 2 marks available. The majority gained at least 1 mark for correctly calculating the number of moles of zinc used or hydrogen formed, namely 0.2 moles. Many were able to recognise that to calculate the volume of hydrogen, then the number of moles needed to be multiplied by 24, to achieve 4.8 dm³. Occasionally, after having obtained the correct answer, candidates then incorrectly multiplied this answer by 2, to give a final answer of 9.6, so only scoring 1 mark.

(b) Zinc reacts wit	h dilute hydrochloric acid to form zinc chloride and hydrogen.	
pressure, when (relative atomi	$Zn(s) + 2HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ ig_g maximum volume of hydrogen formed, at room temperature and in 13.0 g of zinc reacts completely with excess hydrochloric acid. ic mass: $Zn = 65.0$, as occupies 24 dm ³ at room temperature and pressure)	(2)
Ar Zn = 65	Inde Za-> Inde Hz	
55g= Imple	0.2nol Zn -> 0.2nol Hz	
13g= 0.2mol	Imai = 24dm3	
	0.2m=1=4.8dm3	
	volume of hydrogen =	4.8 dr
work	Results Plus Examiner Comments bical response. This candidate has clearly laid out the ting in logical steps to arrive at the correct answer, dm ³ . This response scored 2 marks.	

Question 6 (c) (ii)

This question was extremely well answered, with most candidates scoring the full 2 marks for 'dynamic equilibrium'. When a 1 mark response was seen occasionally, it was for simply mentioning just 'equilibrium' only or simply mentioning 'reversible reaction'.

Question 6 (d)

The quality of many of the responses seen by examiners was exemplary. At Level 3, for 6 marks, many candidates were able to explain in detail the conditions used in the Haber process for the manufacture of ammonia, namely the effects of temperature and pressure and the use of a catalyst on yield and rate in equilibrium reactions. The explanations for the effect of increasing pressure were particularly well developed by candidates, but less so for the effects of temperature or the use of a catalyst.

At Level 2, for 4 marks, tended to discuss the effects of changing the conditions on yield and rate of reaction on the Haber process, with no detailed explanation.

Commonly seen areas of weakness or misconceptions included:

- a confusion over the effect of increasing the temperature, many candidates incorrectly thought that this would increase the yield of ammonia;
- a limited knowledge of how a catalyst affects an equilibrium reaction, such that this was often limited to a catalyst speeding up the rate of a reaction;
- explanations for the increasing rate of reaction using collision theory were often not well-developed.

It is also worthwhile noting that the 'optimum' conditions, for the pressure and temperature used, for the Haber process will vary depending on the sources used, such that those in the question may have not necessarily been the same as those shared with candidates when teaching this topic at centres.

*(d) The reaction between nitrogen and hydrogen is exothermic.

$$N_2 + 3H_2 \Rightarrow 2NH_3$$

If nitrogen and hydrogen were reacted at 90 atm pressure and 300 °C, without a catalyst, some ammonia would be formed eventually.

In the Haber process a pressure of 150 atm and a temperature of 450 °C are used, in the presence of an iron catalyst.

Explain, with reasons, why the Haber process conditions are better for the manufacture of ammonia.

(6) Sleed 5 reac 0 Orces (QC On. 00

Án example of a Level 2, 4 marks, response.

Three effects of change have been discussed: a catalyst speeds up the rate of reaction; increasing pressure - increases the yield, but this is not explained correctly; heat increases (equivalent to increased temp, although poorly expressed) - increases speed of reaction and the effect of using of a lower temperature - increases yield (but there is a compromise between speed and yield).

*(d) The reacti	on between nitrog	en and hy	drogen is e	othermic.		
		N ₂ +	$3H_2 \rightleftharpoons 2h$	IH ₃		
	and hydrogen we me ammonia wo				300 ℃, without a	
	er process a press ence of an iron ca		atm and a t	emperature o	of 450 °C are used,	,
	th reasons, why t	ne Haber p	rocess conc	itions are bet	ter for the	
	re of ammonia.					(6)
A	high	temper	the	mean	s the	
reaction	will be	fret-	but	- low	s the yeild. uve	
A lower	temper	ahue	moe	uns n	ine	
yeild	but	une	fine.			
7						
		ultsP				
ļ	n example of	a Level 1	, 2 marks	, response		
	wo effects due acreasing temp	•				

yield (of ammonia). The reverse argument is also given.

*(d) The reaction between nitrogen and hydrogen is exothermic.

$$N_2 + 3H_2 \rightleftharpoons 2NH_3$$

(6)

If nitrogen and hydrogen were reacted at 90 atm pressure and 300 °C, without a catalyst, some ammonia would be formed eventually.

In the Haber process a pressure of 150 atm and a temperature of 450 °C are used, in the presence of an iron catalyst.

Explain, with reasons, why the Haber process conditions are better for the manufacture of ammonia.

The higher pressure of 150 aten in the Haber process is better for the Manufacture of annonia os it increases the rate of reaction, as the reactants chide nove frequently, and it increases the yield of annuonia as the higher pressure favours the reaction that produces a lower volume of gas, with ferrer noles of gas, so the ammonia in this case. The higher temperature decreases the yield of ammonia, as it favours the endothernic reaction to produce hydrogen and ritrogen, using up the excess energy, but it increases the rate of reaction as the reactants allide more frequently, Therefore, much more animonia can be produced quickly so it is better for the ater industrial manufacture of ammonia. An iron catalyst is better than no catalyst as it lovers the activation energy require the reactions, so it increases the rate of reaction and allows the reactions to reach equilibrium (Total for Question 6 = 12 marks) sooner, so anmonta can be made foster, so this is better than no catalyst. TOTAL FOR PAPER = 60 MARKS This means that the blaber process conditions manufacture

annonia at a faster rate, so non the manufacturers and can get more money quickly.

A typical example of a very detailed answer, Level 3, 6 marks.

The candidate has described all the valid effects of changing all three conditions, with at least two points of explanation for each change: higher pressure - increases speed and increases yield, with an explanation in terms of decreased number of moles/volume and collision theory; higher temperature - decreases yield and increases speed, with an explanation in terms of favouring the endothermic (back) reaction and collision theory; use of a catalyst - speeds up rate, equilibrium reached faster and lowers activation energy.

Paper Summary

In order to improve their performance, candidates should:

- read all the information in the question carefully and use this to help them to answer the question.
- practise writing balanced equations from the specification which regularly appear in the examination, including esterification and the correct formulae for esters, the hydration of ethene and ionic equations, especially for neutralisation reactions.
- revise the correct procedure and results for testing the ions in the specification.
- learn the names of commonly used indicators for titrations and their correct colour changes, and to avoid the use of universal indicator for titrations.
- be able to describe the processes occurring in electrolysis reactions in the specification and to explain these in terms of the redox processes occurring, especially for the purification of copper, the electrolysis of molten salts and solutions of salts, and to avoid incorrectly using chlorine ion instead of the correct term, chloride ion.

Grade Boundaries

Grade boundaries for this, and all other papers, can be found on the website on this link: http://www.edexcel.com/iwantto/Pages/grade-boundaries.aspx

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE