Chemistry A (1530)

Paper 3H

MARK SCHEME – Summer 2003

1.	(a)		2 Mg + $O_2 \rightarrow 2$ MgO reactants; products; balancing the correct formulae;	3
	(b)		An explanation to include: 1. magnesium and oxygen / two or more than one elements; 2. have (chemically) combined together;	2
			plus one communication mark for presenting relevant information in a form that suits its purpose	1
	(c)	(i)	Mg: 12 12 12 Mg ²⁺ : 12 12 10 '''' [Deduct 1 mark for each error]	4
		(ii)	A suggestion to include: 1. oxygen gains; [Reject molecules] 2. two electrons;	2
			Total 12 ma	irks
2.	(a)		nitrogen; oxygen; argon only ;	3
	(b)	(i)	volcanoes / inside the Earth;	1
		(ii)	limestone / marble / chalk / any suitable named rock; [Reject chemical names]	1
		(iii)	fossils; [Reject dead organisms] layers / grains / crumbly / no (observable) crystals; [Ignore sediments]	2
	(c)	(i)	ore;	1

		(ii)	iron - haematite / magnetite / (iron) pyrites / limonite; aluminium - bauxite / cryolite;	2
	(d)		$Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ all formulae correct; balancing the correct formulae; [Ignore state symbols]	2
			Total 12 ma	arks
3.	(a)		alkali (metals);	1
	(b)		2, 8; 1;	2
	(c)	(i)	heat / exothermic / temperature rises / particle description of melting / low melting point;	1
		(ii)	more heat / energy produced with potassium / potassium more reactive;	1
	(d)	(i)	suitable properties of a metal, for example: 1. conducts electricity; 2. reaction with water / acid to form hydrogen; 3. produced at cathode; 4. conducts heat; 5. malleable; 6. ductile; [Ignore shiny]	2
		(ii)	soft / easy to cut / low melting point / very reactive (with water) / reacts with water giving (lilac) flame / burns with a (purple) flame;	1
		(iii)	one electron / same number; in the outer shell;	2
			Total 10 mai	rks
4.	(a)		$H_2 + Cl_2 \rightarrow 2 \ HCl$ reactants; products; balancing the correct formulae;	3

(b)

5.

(a) (i)

shared pair between hydrogen and chlorine; fully correct;

2

[Deduct 1 mark for incorrect inner electrons]

1

(c) add / react with / dissolve in / water / OWTTE;

Total 6 marks

 $CH_{4}(g) + 2O_{7}(g) \rightarrow CO_{7}(g) + 2H_{7}O(1/g)$ formulae;

balancing the correct formulae;

state symbols for any three of these four species;

3

- (ii) An explanation to include:
 - 1. energy required to break bonds / energy released in making bonds;
 - 2. more energy released than required;

2

A calculation to include: (b)

Either

1. 16 g CH₄
$$\rightarrow$$
 44 g CO₂;

2/3. 1000 g CH₄
$$\rightarrow \frac{44}{16}$$
; x 1000; g CO₂ = 2750 g

4. mass of CO₂ in 5 hours = $2750 \times 5 = 13750 \text{ g}$; [unit required]

4

[Allow ecf from incorrect equation in part (a)(i)]

or

1.
$$\frac{1000}{16}$$
 = 62.5 (moles);

2. 62.5 (moles) CO₃;

3.
$$62.5 \times 44 = 2750$$
 (g);

4. $2750 \times 5 = 13750 \text{ g} [\text{unit} \text{ required}]$

[Note: Indicate on script where marks awarded]

Total 9 marks

- 6. (a) Any three from:
 1. mixture
 - 1. mixture of hydrocarbons;
 - 2. heated / starts as gas or vapour;
 - 3. fractionating tower / fractional distillation;
 - 4. fractions separate;
 - 5. due to different boiling points;
 - 6. naphtha collects high in tower;

3

(b)
$$C_{10}H_{22} \rightarrow C_{2}H_{4}; + C_{8}H_{18};$$

2

2

- (ii) A description to include:
 - 1. add bromine (water);
 - 2. turns from orange / yellow / brown;

[Reject red]

3. to colourless / decolourises;

[Reject clear]

3

C - C for two carbon chain only;

linking bonds on C;

[Ignore()]

2

- (iv) An explanation to include:
 - 1. double bonds break open;
 - 2. monomers link;

2

Total 14 marks

7. (a) $CaCO_3$ (s) + 2 HCl (aq) $\rightarrow CaCl_2$ (aq) + H_2O (l) + CO_2 (g)

formulae;

balancing the correct formulae;

state symbols for any four of these five species;

3

- (b) (i) An explanation to include:
 - 1. gas / carbon dioxide;
 - 2. is lost from the flask;

2

		(11)	A suggestion to include: 1. stops (acid) spray; 2. from leaving flask / would cause extra mass loss;	2
	(c)		x-axis: 1 large square = 1 minute, y-axis: 1 large square = 0.4 or 0.5 g; all points correctly plotted;; [Deduct 1 mark for each incorrectly plotted point] best fit curve;	4
	(d)		rate of reaction falls/slows; fewer reacting particles / lower surface area; fewer collisions;	3
			plus one communication mark for ensuring that spelling, punctuation and grammar are accurate, so that the meaning is clear	1
			Total 15 m	narks
8.	(a)		forward and back reactions occurs at the same time; same rate / concentrations constant; [Stating reaction is reversible – insufficient for a mark]	2
	(b)		yield / percentage of conversion decreases; higher pressure reduces volume; favours reactants (side) / LHS / fewer molecules on LHS;	3
	(c)		yield / percentage of conversion decreases; lower temperature favours exothermic reaction; which is the back reaction;	3
	(d)		no effect on yield; catalyst increases rate reactions; of forward and backward equally;	3
			plus one communication mark for using a suitable structure and style of writing;	1
			Total 12 m	arks
			TOTAL MAR	K 90

1530 Mark Scheme