Paper Reference(s) 5CH2F/01 ### **Edexcel GCSE** ## Chemistry/Additional Science **Unit C2: Discovering Chemistry** **Foundation Tier** Monday 21 May 2012 – Morning Time: 1 hour plus your additional time allowance ### INSTRUCTIONS TO CANDIDATES Write your centre number, candidate number, surname, initials and your signature in the boxes below. Check that you have the correct question paper. | Centre No. | | | | | | | | |-----------------|---|---|---|---|---|---|---| | Candidate No. | | | | | | | | | Surname | | | | | | | | | Initial(s) | | | | | | | | | Signature | | | | | | | | | Paper Reference | 5 | С | Н | 2 | F | 0 | 1 | - Use BLACK ink or ball-point pen. - Answer ALL questions. - Answer the questions in the spaces provided - there may be more space than you need. # MATERIALS REQUIRED FOR EXAMINATION Calculator, ruler # ITEMS INCLUDED WITH QUESTION PAPERS Nil ### INFORMATION FOR CANDIDATES - The total mark for this paper is 60. - Questions labelled with an ASTERISK (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. - A Periodic Table is provided. ### **ADVICE TO CANDIDATES** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. ### **Answer ALL questions** Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . ### **TEMPERATURE CHANGES** - 1 (a) When a small amount of solid ammonium chloride is shaken with water, a colourless solution forms. - (i) What type of change has occurred? (1 mark) Put a cross (\boxtimes) in the box next to your answer. A dissolving B displacement C neutralisation D precipitation | (ii) | When this change takes place there is a decrease in temperature. | |-------------|--| | | Describe how you could measure this change in temperature. (2 marks) | | | | | | | | | | | | | | | | | (iii) | Some chemical reactions cause a decrease in temperature. | | | Give the name of the type of chemical reaction that causes a decrease in temperature. (1 mark) | | (Question c | ontinues on next page) | (b) Marble is a form of calcium carbonate. When marble chips are added to cold, dilute hydrochloric acid, the mixture The word equation for the reaction is dioxide carbon chloride calcium hydrochloric acid carbonate calcium Give the name of the product that causes the mixture to fizz. (1 mark) | (ii) | The experiment is repeated using warm, instead of cold, acid. | |-------|--| | | State the difference you would SEE when the marble chips react with warm, instead of cold, acid. (1 mark) | | | | | | | | | | | (iii) | Explain what must be done to the marble chips so that the reaction with the warm, dilute hydrochloric acid is even faster. (2 marks) | | | | | | | | | | | | | | | | | | (Total for Question 1 = 8 marks) | | | | (Questions continue on next page) ### **SALTS** 2 The table shows some salts that are soluble and some that are insoluble in water. | SOLUBLE SALTS | INSOLUBLE SALTS | |---|----------------------------------| | copper chloride
lead nitrate
sodium carbonate | barium sulfate
lead carbonate | (a) An insoluble salt can be prepared by mixing two salt solutions. Choose TWO salts from the table that can be reacted together to form lead carbonate. (2 marks) and (b) Barium chloride solution reacts with copper sulfate solution. | barium
chloride | + | copper
sulfate | \rightarrow | barium
sulfate | + | copper
chloride | |-----------------------------------|---|-----------------------------|---------------|-------------------|---|--------------------| | | _ | in what is S
ide and cop | (Question continues on next page) | | | | | | | | (c) | A 'barium meal' may be given to a patient before an X-ray is taken. A 'barium meal' is a suspension of barium sulfate in water. | | | | | | |-----|---|---|--|--|--|--| | | Give ONE reason why barium sulfate is used in this way. (1 mark) | (d) | Complete the sentences by putting a cross (☒) in the box next to your answer. | | | | | | | | (i) | (i) The table shows that copper chloride is soluble in water. | | | | | | | | | s suggests that the structure of copper oride is | | | | | | | Α | simple molecular, covalent | | | | | | | В | giant molecular, covalent | | | | | | | С | ionic | | | | | | | D | metallic | | | | | | | (1 n | nark) | | | | (Question continues on next page) | | (ii) | Sod | ium carbonate | is an ionic | compound | l. | |----------------------------------|------|-------|---|-------------|-------------|--------------------| | | | | most likely me
onate is | lting point | of sodium | | | | | A | −85 °C | | | | | | | В | 17 °C | | | | | | | С | 146 °C | | | | | | | D | 851 °C | | | | | | | (1 m | ark) | | | | | (e) | | | carbonate cont
e ions, CO ₃ ^{2–} . | ains sodiu | m ions, Na | [†] , and | | | Giv | e the | formula for so | dium carbo | onate. (1 m | ark) | | | | | | | | | | | | | | | | <u> </u> | | | | | (Tot | al for Ques | stion 2 = 8 | marks) | | Questions continue on next page) | | | | | | | | Λ | Λ | IY' | ГП | D | | |---|---|-----|----|-------------------|--| | N | / | | ΙU | $\mathbf{\Gamma}$ | | | 3 | (a) | Water and oil do not mix. | | | | | | | |-----|-------|---------------------------|---|---|--|--|--|--| | | | (i) | What term is used to describe two liquids that do not mix? (1 mark) | | | | | | | | | | Put | a cross (⊠) in the box next to your answer. | | | | | | | | | A | ionic | | | | | | | | | В | inflammable | | | | | | | | | С | immiscible | | | | | | | | | D | insoluble | | | | | | (Qı | uesti | on c | onti | nues on next page) | | | | | (ii) The water and oil mixture can be separated using a separating funnel. Describe how the separating funnel is used to separate samples of water and oil from the mixture. (2 marks) | (Question continues on next page) | (Turn over) | |-----------------------------------|-------------| | (b) | Wax and sand are both solids at room temperature. The wax has a melting point of 64 °C. | | | | | | | | |---------|--|---|--|--|--|--|--|--| | | | | | | | | | | | | The | The sand has a melting point of 1610 °C. | | | | | | | | | (i) | State what will happen to the wax when it is heated using a Bunsen burner. (1 mark) | | | | | | | | | | | | | | | | | | | (ii) | When the sand is heated using a Bunsen burner there is no visible change. | | | | | | | | | | Explain why. (2 marks) | | -:: | | | | | | | | | (Questi | ion c | ontinues on next page) | | | | | | | | (111) | are | only weak forces between the molecules in wax. | | | | |-----------------------------------|-----|--|--|--|--| | | | at type of structure does wax have?
nark) | | | | | | Put | a cross (☒) in the box next to your answer. | | | | | | A | simple molecular, covalent | | | | | | В | giant molecular, covalent | | | | | | С | ionic | | | | | | D | metallic | | | | | (Question continues on next page) | | | | | | (c) A written note was found at a crime scene. Forensic scientists used chromatography to investigate the dyes in the ink used to write the note. They put spots of four substances on chromatography paper. W was pure red dye X was pure blue dye Y was pure yellow dye Z was the ink used on the note The result of the chromatography is shown. (Question continues on next page) | (i) | State how you can tell that dyes W, X and Y are pure. (1 mark) | |------|---| | | | | | | | | | | | | | (ii) | Explain what you can deduce about the ink Z used on the note. (2 marks) | | | | | | | | | | | | | | | | | | (Total for Question 3 = 10 marks) | (Questions continue on next page) ### **WATER** 4 The diagram shows a model of a water molecule. (a) Explain, in terms of electrons, how a covalent bond is formed between an oxygen atom and a hydrogen atom. (2 marks) | (b) | Calculate the relative formula mass of water, H ₂ O. (2 marks) | | | | | |---------|---|--|--|--|--| | | (Relative atomic masses: H = 1·0, O = 16) | answer = | | | | | | (c) | Hydrogen burns in oxygen to form water. | | | | | | | (i) Write the balanced equation for this reaction. (3 marks) | (Questi | on continues on next page) | | | | | | (ii) | In an experiment the mass of water obtained was 2·0 g. The theoretical yield for this experiment was calculated to be 4·0 g. | |-------|--| | | Calculate the percentage yield. (2 marks) | | | | | | | | | percentage yield = % | | (iii) | Suggest ONE reason why less than 4·0 g of water was obtained in this experiment. (1 mark) | | | | | | (Total for Question 4 = 10 marks) | | | | ### **ATOMS** 5 The positions of five elements, A, B, C, D and E, are shown in the periodic table. These letters are not the atomic symbols of these elements. (a) Which element, A, B, C, D or E, is a transition metal? (1 mark) (b) State why elements A and B have similar reactions.(1 mark) ______ | (c) | When Mendeleev produced his periodic table, the element labelled D had not been discovered. He predicted the properties of the element and left a space for it in his table. | | | | | | |---------|--|--|--|--|--|--| | | Explain how Mendeleev was able to predict the properties of element D. (2 marks) | (Questi | on continues on next page) | | | | | | | (d) | An atom of element C contains 29 protons. | | | | | | |----------|--|--|--|--|--|--| | | Explain how you can use this information to calculate the number of protons in an atom of element D. (2 marks) | (Questia | on continues on next nage) | | | | | | | *(e) | An atom has an atomic number of 9 and a mass number of 19. | |---------|---| | | Describe the numbers and positions of electrons, protons and neutrons in this atom. (6 marks) | (Contin | ue your answer on next page) | | | |---------------------------------------| |
 | |
 | | | | | | | | | | | | | |
(Total for Question 5 = 12 marks) | | (| ### **METALS AND THEIR COMPOUNDS** | 6 | (a) | Complete the sentence by putting a cross (☒) in the box next to your answer. | | | | | | |-----|-------|--|--|--|--|--|--| | | | Sodium is an alkali metal. | | | | | | | | | In the periodic table, sodium is in group | | | | | | | | | □ A 0 | | | | | | | | | □ B 1 | | | | | | | | C 4 | | | | | | | | | | □ D 7 | | | | | | | | | (1 mark) | | | | | | | (Qı | uesti | on continues on next page) | | | | | | (b) The diagram shows the structure of a metal. ### delocalised electrons positively charged ions Explain how metals conduct electricity. (2 marks) | (c) | A sodium chloride crystal contains sodium cations and chloride anions. | | | | | |---------|--|---|--|--|--| | | (i) | State the colour produced by sodium compounds in a flame test. (1 mark) | | | | | | (ii) | Describe how silver nitrate solution can be used to show that solid sodium chloride contains chloride ions. (2 marks) | (Questi | on c | continues on next page) | | | | | *(iii) | Sodium reacts with chlorine to form sodium chloride. | |--------------|---| | | Describe how the reaction can be carried out, explaining what happens when a sodium atom reacts with a chlorine atom. (6 marks) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | (Continue ye | our answer on next page) | | _ | |----| | | | | | _ | | | | s) | | S | | | **END** # The Periodic Table of the Elements | 0
4
He
helium
2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |------------------------------------|---|------------------------------------|-----------------------------------|--|--------------------------------------|---| | 7 | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | orted but not | | 9 | 16
O
oxygen
8 | 32
\$
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ave been rep | | 2 | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | rs 112-116 har
authenticated | | 4 | 12
C
carbon
6 | 28
Si
silicon | 73
Ge
gemanium
32 | 119
Sn
tin | 207 Pb lead 82 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | ဇ | 11
B
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
TI
thallium
81 | nents with at | | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elen | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | [272] Rg roentgenium | | | | | 59
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds damstadtium 110 | | | | | 59
Co
cobalt
27 | 103
Rh
modium
45 | 192
Ir
iridium
77 | [268] Mt meitnerium 109 | | H hydrogen | | | 56
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
menium
75 | [264] Bh bohrium 107 | | | mass
bol
number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266] Sg seaborgium 106 | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | relati
atc
atomic | | | 91
Zr
zirconium
40 | | [261] Rf rutherfordium 104 | | | | | 45
Sc
scandium
21 | 89
************************************ | 139
La*
lanthanum
57 | [227] Ac* actinium 89 | | 2 | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226] Ra radium 88 | | - | 7
Li
lithium
3 | Na
sodium | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223] Fr francium 87 | * The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.