Paper Reference(s) 5CH1F/01 ## **Edexcel GCSE** Chemistry/Science **Unit C1: Chemistry in Our World** **Foundation Tier** Monday 21 May 2012 - Morning Time: 1 hour plus your additional time allowance ### **INSTRUCTIONS TO CANDIDATES** Write your centre number, candidate number, surname, initials and your signature in the boxes below. Check that you have the correct question paper. | Centre No. | | | | | | | | | |-----------------|---|---|---|---|---|---|---|---| | Candidate No. | | | | | | | | | | Surname | | | | | | | | | | Initial(s) | | | | | | | | | | Signature | | | | | | | | | | Paper Reference | 5 | С | Н | 1 | F | / | 0 | 1 | - Use BLACK ink or ball-point pen. - Answer ALL questions. - Answer the questions in the spaces provided - there may be more space than you need. # MATERIALS REQUIRED FOR EXAMINATION Calculator, ruler # ITEMS INCLUDED WITH QUESTION PAPERS Nil ### INFORMATION FOR CANDIDATES - The total mark for this paper is 60. - Questions labelled with an ASTERISK (*) are ones where the quality of your written communication will be assessed – you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions. - A Periodic Table is provided. ### **ADVICE TO CANDIDATES** - Read each question carefully before you start to answer it. - Keep an eye on the time. - Try to answer every question. - Check your answers if you have time at the end. | Δ | N | 121 | Λ | FR | Δ | 1 (| | JF | ST | 10 | NS. | |---------------|-----|-----|-----|----|--------|-----|--------------|----|------------|----|------| | $\overline{}$ | A D | | 7 W | | \Box | _ \ | \mathbf{x} | | U I | | 110. | Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes . ### **IRON** 1 Iron occurs in the Earth's crust as an ore. The ore is mainly iron oxide, Fe_2O_3 . - (a) Give the name of the element combined with iron in iron oxide. (1 mark) - (b) When iron oxide is heated with carbon, the products are iron and carbon dioxide. - (i) Complete the word equation for this reaction. (2 marks) iron oxide + _____ → iron + ____ | (ii) | | at happens to the iron oxide during thi ction? (1 mark) | |--------------|-------|---| | | | a cross (🔀) in the box next to your swer. | | | A | the iron oxide burns | | | В | the iron oxide is neutralised | | | С | the iron oxide is oxidised | | | D | the iron oxide is reduced | | (Question co | ontir | nues on next page) | | (0) | iioii coilodes wileii | it is left iii iiioist aii. | | | | | | |---------|--|---------------------------------|--|--|--|--|--| | | This list shows iron and three other metals in reactivity series order, with the most reactive metal at the top. | | | | | | | | | most reactive | magnesium
iron
lead | | | | | | | | least reactive | silver | | | | | | | | Explain which metal than iron. (2 marks) | in the list will corrode faster | (Questi | on continues on nex | t page) | | | | | | | (d | • | inless steel is an alloy containing iron and omium. | |--------|-------|--| | | (i) | State the meaning of the term ALLOY. (1 mark) | | | | | | | | | | | (ii) | Cutlery is made of stainless steel. | | | | Give a reason why cutlery is not made of pure iron. (1 mark) | | | | | | | | | | | | (Total for Question 1 = 8 marks) | | (Quest | tions | continue on next page) | ### THE EARTH'S ATMOSPHERE 2 The amounts of some gases in the Earth's early atmosphere are shown on the bar chart. (a) Complete the sentence by putting a cross (∑) in the box next to your answer. The earth's earliest atmosphere was formed by (1 mark) - A animals breathing - B trees burning - C plants photosynthesising - D volcanoes erupting (Question continues on next page) (b) The amounts of some gases in the atmosphere on Earth today are shown on this bar chart. Which gas has decreased by the largest amount from the Earth's early atmosphere to the atmosphere of the Earth today? (1 mark) Use this bar chart and the bar chart in (a). Put a cross (\boxtimes) in the box next to your answer. A argon B carbon dioxide C nitrogen D oxygen (Question continues on next page) | (c) | There was also a large amount of water vapour in the Earth's early atmosphere. | |---------|--| | | There is a much smaller amount of water vapour in the atmosphere on Earth today. | | | Explain how the amount of water in the Earth's atmosphere decreased. (2 marks) | | | | | | | | | | | | | | | | | (Questi | on continues on next page) | | (d) Methane burns in air. | |---| | methane + oxygen carbon dioxide + water | | This causes small changes in the amounts of some gases in today's atmosphere. | | Explain why burning methane changes the amounts of gases in the atmosphere. (2 marks) | | | | | | | | | | | | (Question continues on next nage) | | (e) | Apart from burning fossil fuels, state TWO other activities that affect the amounts of gases in the atmosphere. (2 marks) | |-----|---| | | | | | | | | | | | | | | | | | (Total for Question 2 = 8 marks) | | | | # **HYDROCHLORIC ACID** | 3 | (a) | Dilute hydrochloric acid can be used to make salts | |-----|-------|--| | | | The salts produced are chlorides. | | | | Some copper compounds react with dilute hydrochloric acid to produce copper chloride. | | | | Which of the following compounds will NOT neutralise dilute hydrochloric acid to produce copper chloride? (1 mark) | | | | Put a cross (☒) in the box next to your answer. | | | | A copper carbonate | | | | B copper hydroxide | | | | C copper oxide | | | | □ D copper sulfate | | (Qı | ıesti | on continues on next page) | | | | | (b) Use words from the box to complete the word equation for the reaction of magnesium carbonate to produce magnesium chloride. (2 marks) | carbon dioxide | hydrochloric acid | nitric acid | |----------------|-------------------|-------------| | oxygen | sulphuric acid | | + water → magnesium + chloride magnesium + carbonate (c) Indigestion tablets neutralise excess hydrochloric acid in the stomach. Two tablets, A and B, were tested. The table shows the cost of each tablet and the volume of hydrochloric acid neutralised by each tablet. | TABLET | COST OF ONE
TABLET / p | VOLUME OF HYDROCHLORIC ACID NEUTRALISED BY ONE TABLET / cm ³ | |--------|---------------------------|---| | Α | 2.5 | 30.6 | | В | 1.2 | 10.2 | Explain which tablet, A or B, is the best value for money. (2 marks) (d) Hydrochloric acid was electrolysed using the apparatus shown. (i) Chlorine gas was collected in one of the test tubes. Describe a test to show the gas is chlorine. (2 marks) | | (ii) Gas X was collected in the other test tube. When gas X was mixed with air and ignited, it burned with a squeaky pop. | |-----|---| | | Give the name of gas X. (1 mark) | | (e) | In industry, large amounts of chlorine are produced. | | | Explain why it could be dangerous to produce large amounts of chlorine in a factory. (2 marks) | | | | | | (Total for Question 3 = 10 marks) | | F | П | ΙF | | S | |---|---|----|---|---| | | u | _ | _ | u | | 4 | Different car engines are designed to use different | |---|---| | | fuels. | These fuels include diesel, ethanol, hydrogen, LPG (liquefied petroleum gas) and petrol. - (a) LPG contains the compound propane. - (i) Complete the structure of a molecule of propane, C_3H_8 , showing all bonds. (1 mark) (ii) Propane burns completely to produce carbon dioxide and water. Describe how you would use limewater to show that carbon dioxide is produced. (2 marks) | (iii) | Incomplete combustion occurs when propane burns with insufficient oxygen available for complete combustion. Explain a problem caused by the products of this incomplete combustion. (2 marks) | |-------|--| (b) | | fuels can be used as alternatives to -renewable, fossil fuels. | |--------|-------------|--| | | (i) | Which of the following can be produced as a biofuel? (1 mark) | | | | Put a cross (☒) in the box next to your answer. | | | | A ethanol | | | | B hydrogen | | | | C LPG | | | | D petrol | | | (ii) | Explain how a biofuel is different from a fossil fuel. (2 marks) | | | | | | | | | | | | | | | | | | | | | | Ouesti | on c | ontinues on poyt page) (Turn ever) | (c) The table shows information about two fuels, A and B, used in car engines. | FUEL | PHYSICAL
STATE | COST
OF 1 kg
/£ | ENERGY PRODUCED BY COMPLETE COMBUSTION OF 1 kg / MJ | AVAILABILITY
AT FUEL
STATION | |------|-------------------|-----------------------|---|------------------------------------| | A | gas | 2·13 | 142 | limited | | В | liquid | 1.95 | 47 | good | Explain which fuel, A or B, would be best for powering a car. (2 marks) (Total for Question 4 = 10 marks) # **CALCIUM CARBONATE** | 5 | (a) | Limestone is a rock which often contains fossils. | | | |-----|------|---|--|-------------| | | | What ty | pe of rock is limestone? (1 mar | k) | | | | Put a cr | oss ($igotimes$) in the box next to your | answer. | | | | A | igneous | | | | | □В | lava | | | | | С | metamorphic | | | | | D | sedimentary | | | | (b) | Limesto | one is an important raw material. | | | | | _ | of these is made using limestone I? (1 mark) | e as a raw | | | | Put a cr | oss ($oxed{oxtime}$) in the box next to your | answer. | | | | A | bleach solution | | | | | □В | cement | | | | | □ c | fertilisers | | | | | D | soap | | | (Qu | esti | on conti | nues on next page) | (Turn over) | (c) Limestone contains calcium carbonate. Calcium carbonate can be converted into calcium oxide. Calcium oxide can then be converted into calcium hydroxide. (i) A lump of calcium carbonate is heated to convert it into calcium oxide in step A. Explain why the mass of calcium oxide formed is less than the original mass of calcium carbonate. (2 marks) (Turn over) | |
 |
 | |--|------|------| Continu | ue your answer on next page) | (Turn over) | |----------------------|--|--------------| | | | | | | | | | | | | | | | | | | | | | -:-:-:-:: | | | | | | | | -:-:-:-:- | | | | | a new innestone quarry. (o marks) | | | | local community and its surroundings, a new limestone quarry. (6 marks) | • | | | Discuss the advantages and disadvanta | ages, to the | | | material in the chemical industry, many against plans to open new limestone qu | | | *(d) | Even though limestone is an important | raw | | | | | | -:-:-:-:- | | | | | (ii) Write the word equation for the rea step B. (2 marks) | ction in | |
(Total for Question 5 = 12 marks) | |---------------------------------------| | | ### **POLYMERS** - 6 Polymer molecules are made by joining large numbers of small molecules (monomers) together. - (a) The table shows some information about three polymers and the monomers used to make them. Complete the table on page 26. (3 marks) | STRUCTURE OF POLYMER MOLECULE | |---| | | | T-0-T | | □
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□
□ | (Turn over) (Question continues on next page) | (b) | The structure of the polymer | |-----|-----------------------------------| | | poly(tetrafluoroethene), PTFE, is | State why this polymer is NOT a hydrocarbon. (1 mark) (c) Poly(chloroethene), PVC, is used to make gutters and drainpipes. One property of poly(chloroethene) is that it is easy to shape. Describe other properties of poly(chloroethene) that make it suitable for gutters and drainpipes. (2 marks) | *(d) | Waste is often disposed of by putting it in landfill sites, by burning or by recycling. | |------|---| | | Discuss the advantages and disadvantages of each disposal method, and explain which disposal method should be used for plastic bottles. (6 marks) | (Total for Question 6 = 12 marks) | |-----------------------------------| | TOTAL FOR PAPER = 60 MARKS | | | **END** # The Periodic Table of the Elements | 0 He | 2 | 20
Ne
neon
10 | 40
Ar
argon
18 | 84
Kr
krypton
36 | 131
Xe
xenon
54 | [222]
Rn
radon
86 | fully | |-------------|----------------|---|------------------------------------|------------------------------------|-------------------------------------|--------------------------------------|---| | _ | | 19
F
fluorine
9 | 35.5 CI chlorine 17 | 80
Br
bromine
35 | 127
 | [210] At astatine 85 | Elements with atomic numbers 112-116 have been reported but not fully authenticated | | 9 | | 16
0
0
8 | 32
S
sulfur
16 | 79
Se
selenium
34 | 128
Te
tellurium
52 | [209] Po polonium 84 | ave been rep
J | | rC | | 14
N
nitrogen
7 | 31
P
phosphorus
15 | 75
As
arsenic
33 | 122
Sb
antimony
51 | 209
Bi
bismuth
83 | s 112-116 hav
authenticated | | 4 | | 12
carbon
6 | 28
Si
silicon | 73
Ge
germanium
32 | 119
Sn
tin
50 | 207 Pb lead 82 | omic number | | က | | 11
boron
5 | 27
AI
aluminium
13 | 70
Ga
gallium
31 | 115
In
indium
49 | 204
T
thallium
81 | nents with atc | | | | | | 65
Zn
zinc
30 | 112
Cd
cadmium
48 | 201
Hg
mercury
80 | Elen | | | | | | 63.5
Cu
copper
29 | 108
Ag
silver
47 | 197
Au
gold
79 | [272] Rg roentgenium | | | | | | 59
Ni
nickel
28 | 106
Pd
palladium
46 | 195
Pt
platinum
78 | [271] Ds darmstadtium 110 | | | | | | 59
Co
cobalt
27 | 103
Rh
modium
45 | 192
Ir
iridium
77 | [268] Mt meitnerium 109 | | hydrogen | , - | | | 56
iron
26 | 101
Ru
ruthenium
44 | 190
Os
osmium
76 | [277]
Hs
hassium
108 | | | · | | | 55
Mn
manganese
25 | [98] Tc technetium 43 | 186
Re
rhenium
75 | [264] Bh bohrium 107 | | | | mass
bol
number | | 52
Cr
chromium
24 | 96
Mo
molybdenum
42 | 184
W
tungsten
74 | [266] Sg seaborgium 106 | | | Key | relative atomic mass
atomic symbol
name
atomic (proton) number | | 51
V
vanadium
23 | 93
Nb
niobium
41 | 181
Ta
tantalum
73 | [262] Db dubnium 105 | | | | relati
atc
atomic | | 48
Ti
titanium
22 | 91
Zr
zirconium
40 | 178
Hf
hafnium
72 | [261] Rf rutherfordium 104 | | | Ī | | | 45
Sc
scandium
21 | 89 × yttrium 39 | 139
La*
lanthanum
57 | [227]
Ac*
actinium
89 | | 2 | , | 9
Be
beryllium
4 | 24
Mg
magnesium
12 | 40
Ca
calcium
20 | 88
Sr
strontium
38 | 137
Ba
barium
56 | [226] Ra radium 88 | | ~ | | 7
Li
lithium
3 | 23
Na
sodium
11 | 39
K
potassium
19 | 85
Rb
rubidium
37 | 133
Cs
caesium
55 | [223] Fr francium 87 | ^{*} The lanthanoids (atomic numbers 58-71) and the actinoids (atomic numbers 90-103) have been omitted. The relative atomic masses of copper and chlorine have not been rounded to the nearest whole number.