Mark Scheme (Results)
June 2011

360Science
GCSE Physics
Structured Paper P3 (5049/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our Science Advisor directly by sending an email to Stephen Nugus on ScienceSubjectAdvisor@edexcelexperts.co.uk. You can also telephone 08445760037 to speak to a member of our Subject Advisor team.

June 2011
Publications Code UG028538
All the material in this publication is copyright
© Edexcel Ltd 2011

5049 Mark Scheme

J une 2011

Question Number	Answer		Acceptable answers		Ignore	Reject	Mark
2(a)	Note: $7 / 8$ correct $=4$ marks 5/6 correct $=3$ marks 3/ 4 correct $=2$ marks 1/ 2 correct $=1$ mark						
	the following words should be ringed arm ; carbon dioxide ; detectors / from ; reflected;	replaced by finger (tip) oxygen emitters / to transmitted/	finger, e $\mathrm{O}_{2} / \mathrm{O} /$ LED / di absorbed	detected / received			(4)
Question Number	Answer	Acceptable answers		Ignore	Reject	Mark	
2(b)(i)	the pulse ;	pulse rate heart / heart beat / heart rate arterial blood / pumped blood		mention of blood flow venous		(1)	

Question Number	Answer	Acceptable answers	Ignore	Reject
2(b)(ii)	idea of counting number of pulses in given time period (converting to pulse rate in minute)/eq ;		refs to heart monitors	Mark

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
3(a)(i)	0.8 (s)				

Question Number	Answer		Acceptable answers	Ignore	Reject	Mark
3(a)(ii)	substitution	$\mathrm{f}=1 / \mathrm{T}=1 / 0.8$	e.c.f from (a)(i)			
evaluation	$(1.25 \times 60=) 75$	bald correct ans $=2$ marks 1 mark				
allow alternative methods						

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
3(b)	(second degree) heart block;		other possible answers from key		(1)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
4(a)	X in top right hand "box" of graph;	dot in this box with an X marked nearby			(1)
Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
4(b)	alpha ;				(1)
Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
4(c)	loses/releases energy ; PLUS any one from: 1. undergoes (more) rearrangement ; 2. becomes stable; 3. no change in p or n number/eq;	no p lost/ no n lost	refs to - (electronic) charge - electrons - mass - 'nucleus stays the same' - Confusion with PET scanner		(2)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
5(a)	Any three from: 1. (particles) moving; 2. randomly ; 3. colliding ; 4. with side of (balloon) ; 5. (exerting) force;	must be in the context of particles....air is insufficient...allow molecules/atoms allow have kinetic energy hitting, bumping into	bald 'energy' freely impacts with other particles push		(3)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
5(b)(i)	290(K);	$290.15(\mathrm{~K})$			

Question Number	Answer		Acceptable answers	Ignore	Reject	Mark
5(b)(ii)	$\begin{aligned} \frac{101 \times 2.1}{290} & =\frac{102 \times 2.2}{\mathrm{~T}_{2}} ; \\ \mathrm{T}_{2} & =\frac{102 \times 2.2}{101 \times 2.1} \times 290 ; \\ & =306.8(\mathrm{~K}) ; \end{aligned}$ Note: allow substitution and transpose in either order allow e.c.f from (a)(i) bald correct answer $=3$ marks	substitution transpose evaluation	allow ans which rounds to 307		incorrect equation	(3)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
6(a)	Any one from:	anti-particles			
	1. electron(s);	any specified quark			
	2. quark(s);	correct symbols		(1)	

Question Number	Answer	Acceptable answers	Ignore	Reject
6(b)	$(+) 2 / 3(e)$ $-1 / 3(e) ; i ;$	Allow sensible use of thirds factor OR correct signs for 1 mark		(2)

Question Number	Answer	Acceptable answers	Ignore	Reject
$\mathbf{6 (c)}$	u changes to d; p changes to n ;	allow uud \rightarrow udd/eq p number decreases by 1, n number increases by 1	• positrons emitted from nucleus refs to electrons	(2)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
6(d)	Any three from: 1. (F-18/isotope) attached to glucose/ glucose goes to site; 2. beta+ annihilates electron ; 3. (2) gamma produced; 4. 2 gamma in opposite directions ; 5. detected simultaneously ; 6. 'triangulation' idea;	check diagram for details biological details for 1 mark max β^{+}annihilates β^{-} at 180°	react		(3)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
7(a)	first and second reflection accurately drawn;				
	(2) decent progression down tube without light escape from fibre on the sides;				

Question Number	Answer		Acceptable answers	Ignore	Reject	Mark
7(b)(i)	For 2 marks $=0.8 / 5 \times 10^{-9} ;$					(2)
	substitution evaluation of the powers	(power =)8/5; correct use of powers of 10 ;	800/5 gets 1 mark must correctly change 800 mJ to 0.8 J and 5 ns to 5 $\mathrm{X} 10^{-9}$ to get the second mark			

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
$\mathbf{7 (b) (i i)}$	time for pulse is very small ;	gap time is (much) longer than pulse time allow to be shown by calculation	references to • danger to patient energy loses as heat/light enfusion with body's pulse	(1)	

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
7(b)(iii)	sensible suggestion e.g. 1. idea of limiting damage to (nearby) skin (cells) 2. to allow doctor to move to next section of tattoo 3. 0.8 W is sustainable from power supply (160MW is not)	preventing damage/burns to skin	implication of radioactive damage or ionisation		(1)
Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
7(b)(iv)	$3.2 \times 10^{12}\left(\mathrm{~W} / \mathrm{m}^{2}\right) ; \text { CAO }$ for 1 mark, a sub of 'a power/an area' must be see e.g. $\frac{160000000}{5 \times 10^{-5}} ; \text { OR } \frac{160}{5 \times 10^{-5}}$			incorrect equation	(2)
Question Number	Answer ${ }^{\text {Ac }}$	able answers	Ignore	Reject	Mark
7(b)(v)	increases; by factor of 4;	mark only oncentrated / doubles	stronger refs to power		(2)

Question Number	Answer		Acceptable answers	Ignore	Reject	Mark
8(a)	$2.08 \times 10^{-15}=\mathrm{V} \times 1.60 \times 10^{-19}$ $\begin{aligned} & \mathrm{V}=\frac{2.08 \times 10^{-15}}{1.60 \times 10^{-19}} ; \\ & 13000(\mathrm{~V}) ; \end{aligned}$	substitution transpose evaluation	Sub or transpose in either order $\frac{\text { k.e. }}{\text { charge }}(=V)$			(3)

| Question
 Number | Answer | Acceptable answers | Ignore | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8 (b)}$ | $1.25 \times 10^{18} \times 1.60 \times 10^{-19} ;$ | substitution | no of e (per s) X charge
 $\mathrm{I}=$ ne/t | | |

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
8(c)	$\begin{aligned} & 2.08 \times 10^{-15} \times 1.25 \times 10^{18} ; \\ & 2600(\mathrm{~J}) ; \end{aligned}$ OR ans to(a) x ans to (b); 2600(J);	k.e. of one e X no of e/s statement that first line is $\mathbf{>} 2500$ (voltage X current) statement that this is $\mathbf{>} 2500$ evaluated ecf			(2)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
9(a)	Any two from: 1. any one problem associated with radioactivity / benefit of ultrasound; 2. any 2nd problem associated with radioactivity / benefit of ultrasound; 3. comparison of time required; 4. benefit of ultrasound based on line 2 of the table 5. non-invasive or non-intrusive	allow perception of danger US is non-ionising ultrasound is quicker - ultrasound is cheaper - personnel in clinic not need to be as well trained / skilled/qualified - easier for patient to get to clinic	- repeat of the data in the stem - real time image - soft tissue - locally		(2)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
9(b)	Any two from: 1. ultrasound wave emitted from probe / to thyroid ; 2. reflects from nodules (to probe); 3. (at the boundary of) different densities of material; 4. idea that image is synthesised from (reflected) data; 5. reason for use of gel;	check diagram for details allow for nodules body / tissues / inside (of body) time analysed (reflected) waves build up image at PC/on screen		for both marks implication that US is radioactive for MP4 implication that US is transmitted	(2)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
9(c)(i)	iodine -123;	'123'			

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
9(c)(i)	Consequential marking Any one from: 1. half life is the shortest; 2. energy emitted is not too high and not too low ; 3. gamma emitted (not beta)	- most suitable half life - half life is only 13 hrs - energy emitted is most suitable	- repeat of the data in the stem - comments on production method		(1)

Question Number	Answer	Acceptable answers	Ignore	Reject	Mark
9(c)(ii)	iodine-131....no mark Any two from: 1. correct discussion/mention of type of source or ionisation needed ; 2. correct discussion of energy level needed in the context of beta; 3. correct comparison of half life needed; 4. correct discussion of production method linked to hospital; If the isotope is incorrect, then max of 1 mark	Gives off beta-minus has a high ionisation energy is high	- comments about gamma - power or strength - high levels		(2)

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG028538 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

