Centre No.						Paper Reference (complete below)									Surname	Initial(s)
Candidate No.										F	1			F	Signature	

Paper Reference(s)

5020F/1F 5048F/1F
 Edexcel GCSE
 Additional Science (5020F) Physics (5048F)
 P2 - Topics 9 to 12
 Foundation Tier

Tuesday 7 June 2011 - Afternoon
Time: 30 minutes

Materials required for examination Calculator

Items included with question papers Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature, and complete the paper reference.
Check that you have the correct question paper.
Answer ALL the questions. Write your answers in the spaces provided in this question paper. Do not use pencil. Use black ink.
Some questions must be answered with a cross in a box (\mathbb{X}). If you change your mind about an answer, put a line through the box (\sharp) and then mark your new answer with a cross (\mathbb{Z}).
Show all stages in any calculations and state the units. Calculators may be used.
Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for individual questions and the parts of questions are shown in round brackets: e.g. (2). There are 6 questions in this question paper. The total mark for this paper is 30 .
There are 12 pages in this question paper. Any blank pages are indicated.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

Team Leader's use only
\square

Turn over

FORMULAE

You may find the following formulae useful.
average velocity $=\frac{\text { displacement }}{\text { time }} \quad v=\frac{s}{t}$
acceleration $=\frac{\text { change in velocity }}{\text { time }} \quad a=\frac{(v-u)}{t}$
force $=$ mass \times acceleration
$F=m \times a$
change in potential energy
kinetic energy $=1 / 2 \times$ mass $\times(\text { velocity })^{2}$
$K E=1 / 2 \times m \times v^{2}$
electrical energy $=$ voltage \times current \times time
$E=V \times I \times t$
power $=\frac{\text { work done }}{\text { time taken }}$
$P=\frac{W}{t}$
work done $=$ force \times distance moved in the direction of the force $W=F \times s$

1. The diagram shows a lithium atom.

(a) Use words from the box to complete the sentences.

Each word may be used once, more than once or not at all.

electrons	ions	neutrons	protons

The particles in orbit around the nucleus are called \qquad
This nucleus contains \qquad and \qquad
(b) Complete the sentence by putting a cross (\mathbb{X}) in the correct box.

	negative $\quad \square$
The charge on this nucleus is	neutral $\quad \square$
	positive \square

positive
2. The figure shows a roller coaster ride and the energy flow diagram for the roller coaster car.

100 units of energy to the motor

energy lost as heat
(a) 100 units of energy are supplied to the motor which lifts the car up to \mathbf{A}.

How many units of energy are lost as heat before the car reaches \mathbf{A} ?
number of units lost before $\mathbf{A}=$ \qquad
(b) At \mathbf{A}, the motor is switched off and the car carries on moving along the ride. Complete the sentence by putting a cross (\boxtimes) in the correct box.

At \mathbf{A}, the roller coaster car has gained
gravitational potential energy only
kinetic and gravitational potential energy
kinetic energy only
(c) The car loses 10 units of energy as it goes between \mathbf{A} and \mathbf{B}. How many units of energy does the car still have at \mathbf{B} ?
number of units of energy at $\mathbf{B}=$
(d) How does the roller coaster car lose energy between \mathbf{A} and \mathbf{B} ?

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. The diagram shows stages in electricity generation at a nuclear power station.

(a) Use a word or words from the diagram to complete each of the boxes \mathbf{A} and \mathbf{B}.

(2)
(b) State one advantage a nuclear power station has over a fossil fuel power station.
\qquad
\qquad
(c) Inside the nuclear reactor, a chain reaction produces heat and some waste products. These waste products will remain dangerous for many years.
(i) The splitting of a uranium- 235 nucleus in this process is called
\qquad
(ii) Why are the waste products dangerous?
\qquad
\qquad
(iii) Why will the waste products remain dangerous for many years?
\qquad
\qquad
\qquad
4. Alex flies a Boeing 777 over a city at night.

The plane's anti-collision lights flash once every second. The photograph shows several seconds of his flight from left to right.

(a) (i) The plane's average speed between \mathbf{A} and \mathbf{B} is $220 \mathrm{~m} / \mathrm{s}$.

Use the equation below to calculate how far Alex's plane travels from \mathbf{A} to \mathbf{B}.
distance $=$ average speed \times time

$$
\text { distance }=
$$

\qquad
(ii) The photograph shows the plane as it accelerates from left to right.

State two pieces of evidence in the photograph which suggest that the plane is accelerating.

1 \qquad
\qquad

2 \qquad
\qquad
(b) The photograph below shows Alex's plane as it flies at constant speed and constant height.

Two of the forces acting on the plane are shown.
The other two forces acting on the plane are lift and air resistance.
Complete the photograph accurately to the same scale by adding
(i) a force arrow for the lift, labelled \mathbf{L}.
(ii) a force arrow for the air resistance, labelled \mathbf{R}.
5. (a) Darren has been charged up using a Van de Graaff generator. His teacher tells him he is negatively charged.

State why his hair stands on end.
\qquad
\qquad
(b) Bev combs her hair with a plastic comb.

Bev's hair also gains a negative charge and her hair stands on end.
Explain how Bev's hair gains a negative charge.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. Safety engineers investigate car crashes.
(a) First the safety engineers accelerate a car.

The car contains a test dummy which has a mass of 80 kg .
The average acceleration of the test dummy is $7.5 \mathrm{~m} / \mathrm{s}^{2}$.
Calculate the average accelerating force acting on the test dummy.
State the unit.

$$
\text { force }=
$$

\qquad unit $=$ \qquad
(b) Next the safety engineers crash the car into a wall.

The car hits the wall at $25 \mathrm{~m} / \mathrm{s}$.
The car takes 0.12 s to stop.
Calculate the average acceleration of the car.
\qquad $\mathrm{m} / \mathrm{s}^{2}$

BLANK PAGE

