Rewarding Learning

Candidate Number

Science: Single Award

Unit 3 (Physics)
Higher Tier

[GSS32]

FRIDAY 11 NOVEMBER 2016, AFTERNOON

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper. Answer all ten questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Questions 3(a) and 6.

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
Total Marks	

1 (a) The table below shows the lowest and highest frequencies that some sea animals can hear.

Sea animal	Lowest frequencyl $\mathbf{H z}$	Highest frequencyl $\mathbf{H z}$
Porpoise	75	150000
Beluga whale	1000	123000
Dolphin	40000	100000
Seal	300	56000

(i) Many sea animals can hear ultrasound. What is meant by the term 'ultrasound'?
\qquad
\qquad
\qquad
(ii) Name the sea animal which can only hear ultrasound.

Answer
(iii) Name the sea animal which can hear the greatest range of frequencies.

Ans
(b) The diagram below shows a dolphin using ultrasound to hunt fish.

The dolphin sends out an ultrasound pulse and the echo returns 0.04 seconds later. Ultrasound travels at $1500 \mathrm{~m} / \mathrm{s}$ in water.

Use the equation:

$$
\text { distance }=\text { speed } \times \text { time }
$$

to calculate the distance between the dolphin and the fish.
(Show your working out.)
Source: Principal Examiner

2 The apparatus below was used to investigate the type(s) of radiation emitted from a source.

The table below shows the results obtained when different materials were

Material	Radiation/cpm
None	1000
1 mm paper	800
5 mm aluminium	800
30 mm lead	15

(a) Name the two types of radiation produced by this source.

Explain your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Radioactive tracers are used to examine organs inside the body. The tracer is put into the patient's body and followed by sensors outside the body.

The table below gives information about three isotopes of iodine that could be used as tracers.

Isotope	Radiation emitted	Half-life
Iodine-128	beta	25 minutes
Iodine-129	beta and gamma	25000000 years
Iodine-131	beta and gamma	8 days

(i) Explain fully what is meant by the term 'half-life'.
\qquad
\qquad
\qquad
(ii) Which isotope of iodine would be the best to use as a radioactive tracer? Explain your answer fully.

Isotope
Explanation
\qquad
\qquad
\qquad
(iii) Explain fully why some nuclei are radioactive.
\qquad
\qquad
\qquad
\qquad

3 (a) The diagram below shows a hydroelectric power station.

Source: Principal Examiner

Explain how this power station produces electricity.
Your answer should include the advantages and disadvantages of using hydroelectric power compared to fossil fuels.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad

Solar cells can also be used to produce electricity. The graph below shows the amount of electricity produced by a solar cell over a 24 hour period in summer.

(b) On the same axes draw the curve you would expect for a 24 hour period in winter.

4 (a) The photograph below shows a 60 W filament bulb. This type of bulb is 15% efficient.

Source: Principal Examiner

What does the term 'efficiency' mean?
\qquad
\qquad
\qquad
(b) The table below gives information about three types of light bulb.

	CFL bulb	Filament bulb	LED spotlight
Power input/W	14	60	10
Cost to use for 2000 hours	$£ 4.80$	$£ 20.40$	$£ 3.40$
Average life/hours	10000	1000	20000
Cost to buy bulb	$£ 2.60$	$£ 0.90$	$£ 10.00$

Source: Principal Examiner

Which bulb would be cheapest to buy and use for 2000 hours?
Explain your answer.
\qquad
\qquad
\qquad
\qquad

5 (a) The diagram below shows a wave produced by a wave machine at a swimming pool.

bottom of pool
(i) Use information from the diagram to calculate:

1. the amplitude of the wave.

Answer \qquad
2. the wavelength of the wave.

Answer \qquad m
(ii) The equation below is used to describe a wave.

For a particular wave, the speed does not change but the wavelength increases. In what way, if at all, will the frequency change?

```
wave speed = frequency }\times\mathrm{ wavelength
```

```
wave speed = frequency }\times\mathrm{ wavelength
```

(b) The diagram below shows two pupils using the flash-bang method to find the speed of sound in air.
(i) Describe fully the flash-bang method.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The experiment was carried out three times and the results are shown below.

Time of the day	Speed/ \mathbf{m} / \mathbf{s}
morning	340
afternoon	335
evening	315

(ii) Calculate the average of these results.

Answer \qquad m/s
(iii) Apart from human error, suggest why all the results are different from each other.

6 The graph below shows a distance-time graph for a bus and a car.

Describe the movement of the car and compare it to the movement of the bus.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7 (a) Keith set up the circuit below to measure the voltage across and the current through a bulb.

State two changes which will occur in the circuit as the sliding contact is moved from \mathbf{A} to \mathbf{B}.
1.
2. \qquad
(b) Suggest one use for a variable resistor in the home.
\qquad
(c) In an investigation, the cross-sectional area of resistance wire was changed and its resistance measured. The results are shown below.

Cross-sectional areal $\mathbf{m m}^{\mathbf{2}}$	Resistance/ohm
0.02	10.9
0.04	5.5
0.05	4.4
0.07	3.1
0.10	2.0

On the grid below, plot a line graph of these results.

[3]
(d) Circuits 1 and $\mathbf{2}$, shown below, were set up to show the role of transformers in the National Grid.

Circuit 1

Circuit 2

Explain fully why the bulb in Circuit $\mathbf{1}$ is much brighter than the bulb in Circuit 2.
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

(Questions continue overleaf)

8 (a) The diagram below shows a car with a crumple zone.
© VPVHunter / iStock / Thinkstock

Crumple zones are designed to help reduce injuries to people inside the car during a crash.
The table below shows information about two cars during a crash.
Car A has a crumple zone and car B does not.

	Car A	Car B
Mass of the car/kg	1200	1200
Mass of the driver/kg	100	100
Force on the driver/N	1500	4500
Time taken to stop/s	1.2	0.4
Velocity before impact/ m/s	13	13

Use information from the table to explain how crumple zones reduce injury to a driver in a crash.
\qquad
\qquad
\qquad
 ory a driver acras.
(b) (i) Use information from the table and the equation below:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the momentum of car \mathbf{A} (including the driver) before the impact.
(Show your working out.)

Answer
(ii) What is the unit of momentum?

Answer
(iii) What is the momentum of car A 2 seconds after the impact? Explain your answer.
\qquad
\qquad
\qquad

9 (a) The diagram below shows a trolley on a ramp. The instantaneous speed of the trolley was measured by sensors every second.

The results are shown below.

Sensor	Time/s	Distance/m	Speed/ \mathbf{m} / \mathbf{s}
A	0	0.00	0.00
B	1	0.05	0.10
C	2	0.20	0.20
D	3	0.45	0.30
E	4	0.80	0.40
F	5	1.25	0.50

(i) Explain fully, in terms of forces, the movement of the trolley down the ramp.
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) Use the equation:

$$
\text { average speed }=\frac{\text { total distance }}{\text { time }}
$$

to calculate the average speed of the trolley between sensors B and D.
(Show your working out.)
\qquad m/s
(iii) If the height of the ramp were increased, what effect, if any, would this have on the average speed?

The table below shows four sets of forces.

	Set of forces
A	$5 \mathrm{~N} \longleftrightarrow 10 \mathrm{~N}$
B	$\longrightarrow 10 \mathrm{~N}$
C	
D	$10 \mathrm{~N} \longleftrightarrow 10 \mathrm{~N}$

(b) Which set (A, B, C or $\mathbf{D})$ produces the largest resultant force?

Answer
(c) Car speed can be measured using instantaneous or average speed cameras. Suggest why average speed cameras may be more useful on a road outside a school.
\qquad
\qquad
\qquad

10 (a) The table below shows some data for five different satellites orbiting the Earth.

Satellite	Height above Earth's surfacel km	Time to orbit the Earth/hours	Mass/kg
Galileo	23000	14	733
GPS	20000	12	1630
GLONASS	19000	11	750
Hubble	550	1.53	11110
ISS	400	1.5	370131

(i) State the trend shown by the information in the table.
\qquad
\qquad
(ii) The mass of the satellite does not affect its orbit time.

Explain how the information in the table shows this.
\qquad
\qquad
(b) As a star produces energy, its chemical composition changes. Name the chemical element which decreases. Explain why the amount of this element decreases over time.
\qquad
\qquad
\qquad
(c) A star gives out energy with a wide range of wavelengths but some gaps appear in its spectrum as dark lines. Part of the spectrum of one star is shown below.

The gaps in the spectrum are caused when an element in the star absorbs the energy at that wavelength.
Identify the elements present in this star by putting ticks (\checkmark) in the table below.

Element	Wavelength/nm	Element present (\checkmark)
Helium	447,502	
Sodium	590	
Hydrogen	$410,434,486,656$	
Iron	$431,467,496,527$	

When astronomers examine the spectra from other galaxies they also show dark lines.

(d) Describe fully what astronomers can conclude about Galaxy B compared to Galaxy A.
\qquad
\qquad
\qquad

