

Ce	ntre Number
71	
Cano	didate Number

General Certificate of Secondary Education 2014–2015

Science: Single Award

Unit 3 (Physics)

Higher Tier

[GSS32]

FRIDAY 14 NOVEMBER 2014, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper. Answer **all eleven** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Questions **4(c)** and **8(b)**.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
Total Marks		

1 (a) Given below are the names of some telescopes and the electromagnetic wave they detect.

Name of telescope	Electromagnetic wave	
Lovell	radio	
COBE	microwave	
Spitzer	infrared	
Hubble	visible	
Galaxy Evolution Explorer	ultraviolet	
XMM Newton	X-rays	
Fermi Large Area	gamma	

(i) All electromagnetic waves can travel through a vacuum. Give **one** other feature of all electromagnetic waves.

_____[1]

Examiner Only

Marks Remark

Each type of electromagnetic wave comes from a main source in Space as shown in the table below.

Source	Electromagnetic wave			
cool gas	radio			
background radiation	microwave			
cool stars	infrared			
surface of stars	visible			
very hot stars	ultraviolet			
hot gas	X-rays			
materials around black holes	gamma			
Use the information from both tables to answer the following questions.				
(ii) Name the telescope which could stars.	d be used to observe very hot			

_____[1]

Examiner Only

Marks Remark

(iii) Which **source** will be detected using the XMM Newton telescope?

_____[1]

(b) European astronomers have discovered a planet the same size as Earth orbiting a star in the Alpha Centauri system. The Alpha Centauri system is 4.3 light years away. Explain fully why astronauts could not travel to this planet.

_____[2]

2 (a) The table below shows the amount of natural radiation which occurs in some foods. This forms part of the radiation that constantly surrounds us.

	Radioactive isotope		
Food	Potassium/ pCi/kg	Radon/ pCi/kg	
Bananas	3520	1.00	
Carrots	3400	1.30	
Potatoes	3400	1.75	
Lima beans	4640	3.50	

- (i) What name is given to this radiation that constantly surrounds us?
- (ii) Name the food which gives the **lowest** combined dose of

_____ [1]

_____[1]

- radiation.
- (b) A person receives about 30 millirem of radiation each year from these sources. Radiation of 1 millirem shortens a person's life by 70 seconds.

Explain why we should **not** be concerned about eating foods containing natural radiation.

_____[1]

Examiner Only Marks Remark

3 The diagram below shows a sound wave travelling through the air.

(b)	(i)	What is the wavelength of the section labelled B–C? Examine Marks Marks	er Only Remark
		Answer m [1]	
	(ii)	Sound waves travel at a speed of 330 m/s in air.	
		Use the equation:	
		frequency =speed wavelength	
		to calculate the frequency of the section labelled B – C .	
		(Show your working out.)	
		Answer Hz [2]	

Examiner Only Marks Remark

[3]

(b) The table below shows the electrical energy (GWh) generated in Northern Ireland from different energy sources between 2008–2012.

Year Energy source	2008	2009	2010	2011	2012
Coal	2077	1402	1858	1450	2403
Hydroelectric	26	31	36	20	21
Wind, wave, solar	568	754	639	893	1047
Oil	369	112	107	88	79
Gas	6568	5674	4884	5397	3732
Total	9608	7973	7524	7848	7282

(i) Name all the fossil fuels shown in the table above.

_____ [1]

 (ii) Give the trend in total energy generated between 2008–2012. Describe the significant changes in the energy sources used over this period.

_____[3]

(c)	A company is proposing to develop an offshore wind farm fifteen kilometres off the coast of Northern Ireland. This would involve up to 100 turbines. Discuss the advantages and disadvantages of the plan to build this wind farm.		Examino Marks	er Only Remark
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.			
		_		
		_		
		_		
		_		
		_		
		[6]		

 (i) On the same axes plot a graph for braking distance using the results below.
The first four points have already been plotted.

	•	2	•

Speed/mph	Braking distance/m
0	0
10	2
20	6
30	14
40	24
50	38
60	55

[2]

Examiner Only Marks Remark

(ii) Use the information to calculate the **stopping distance** for a car travelling at 60 mph.

Answer _____ m [1]

		[3]
c) Explain fully why drinking alcohol may increase the risk of being involved in a car crash	a driver	
שפוויש וויזיטויכע ווי מ כמו טומסוו.		
		_
		[2]
d) The table below shows the number of fatal accidents whic	h occurred	b
on different types of roads, in different conditions, in Great	t Britain	
during 2012.		
Daylight Darknes	S	
Dry Wet Snow Dry Wet	Snow	
Motorway 27 8 1 22 21	1	
Built up area 354 106 3 154 120	8	
Suilt up area 354 106 3 154 120 Sountryside 355 119 12 160 153	8	_
uilt up area 354 106 3 154 120 ountryside 355 119 12 160 153	8 11	9

6 The diagram below shows the parts of a fossil fuel power station including a step-up transformer.

		M.			D	
fue	əl	boiler	turbine	generator	transformer	grid
		© GCSE Sing Hodder Educati	gle Award Science for CCEA ion, 2006. ISBN 978-0-340-92	by TheǿLaverty, James 600-0. "Reproduced by	Napier, Roy White. I permission of Hodde	Published by r Education". Examiner Only
(a)	Explain fully transformer	y why the elect before going i	ricity is passed thro nto the grid.	ugh a step-up		Marks Remark
					[3]	
(b)	State the er when the fu in the boiler	nergy changes lel is burnt	which take place:			
	in the gener	rator			[3]	

7 The diagram below shows a bobsleigh and athlete.

(a) The athlete and bobsleigh had a momentum of 4140 kg m/s.

Use the equation:

momentum = mass × velocity

to calculate the velocity of the bobsleigh.

(Show your working out.)

Answer _____ m/s [2]

(b)	Explain fully, in terms of forces, why the bobsleigh increases speed as
	it moves downhill.

[3]

Examiner Only Marks Remark

(b)	The flash-bang method can be used to measure the speed of sound in air.	n Ex Mai	aminer Only ·ks Remark
	Describe fully how the flash-bang method is used to measure the speed of sound accurately.		
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.		
	[C)]	

9 (a) The table below gives the distance to some galaxies and the speed they are moving away from Earth.

Name of Galaxy	Distance from Earth/light years (× 10 ⁶)	Speed away from Earth/ m/s (×10 ⁴)		
M110	2.8	6		
Sextans B	4.8	10		
Dwingloo 1	9.0	20		
Maffei 1	9.8	21		
Holmberg 11	11.2	23		

(i) Describe the trend shown by this data.

_____[1]

Examiner Only

Marks Remark

(ii) In what way would the red shift from Holmberg 11 differ from Sextans B?

_ [1]

© Lonely__/iStock/Thinkstock

(a) Explain fully how the rays in a microwave oven heat food.

_____ [3]

Examiner Only Marks Remark

(b) Thermal imaging cameras are often used to search for people (body temperature 37°C) trapped in buildings. The camera produces a colour picture; each colour represents a different temperature and infrared wavelength as shown below.

Image colour	Temperature of object/°C	Infrared wavelength/m
orange-yellow	38	$9.34 imes10^{-6}$
orange	36	9.40 × 10 ⁻⁶
red-orange	34	$9.46 imes10^{-6}$
red	32	$9.52 imes 10^{-6}$

Using the information provided, predict the wavelength emitted by a trapped person.

Answer _____ m [1]

9689

__ [2]

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.