Rewarding Learning

General Certificate of Secondary Education 2014-2015

Science: Single Award

Unit 3 (Physics)

Higher Tier

[GSS32]

FRIDAY 14 NOVEMBER 2014, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper. Answer all eleven questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Questions 4(c) and 8(b).

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
Total Marks	

1 (a) Given below are the names of some telescopes and the electromagnetic wave they detect.

Name of telescope	Electromagnetic wave
Lovell	radio
COBE	microwave
Spitzer	infrared
Hubble	visible
Galaxy Evolution Explorer	ultraviolet
XMM Newton	X-rays
Fermi Large Area	gamma

(i) All electromagnetic waves can travel through a vacuum. Give one other feature of all electromagnetic waves.
\qquad
\qquad

Each type of electromagnetic wave comes from a main source in Space as shown in the table below.

Source	Electromagnetic wave
cool gas	radio
background radiation	microwave
cool stars	infrared
surface of stars	visible
very hot stars	ultraviolet
hot gas	X-rays
materials around black holes	gamma

Use the information from both tables to answer the following questions.
(ii) Name the telescope which could be used to observe very hot stars.
\qquad
(iii) Which source will be detected using the XMM Newton telescope?
\qquad
(b) European astronomers have discovered a planet the same size as Earth orbiting a star in the Alpha Centauri system. The Alpha Centauri system is 4.3 light years away. Explain fully why astronauts could not travel to this planet.
\qquad
\qquad
\qquad

2 (a) The table below shows the amount of natural radiation which occurs in some foods. This forms part of the radiation that constantly surrounds us.
(i) What name is given to this radiation that constantly surrounds us?
\qquad
(ii) Name the food which gives the lowest combined dose of radiation.
\qquad
(b) A person receives about 30 millirem of radiation each year from these sources. Radiation of 1 millirem shortens a person's life by 70 seconds.

Explain why we should not be concerned about eating foods containing natural radiation.
\qquad
\qquad
(c) The graph below shows how the count rate of potassium-40 varies with time.

(i) Describe fully the trend shown by these results.
\qquad
\qquad
\qquad
(ii) Use the graph to find the half-life of potassium-40.

Answer \qquad billion years
(iii) A radioactive source has a half-life of five days.

What fraction of the original source will be left after ten days?
Answer \qquad

3 The diagram below shows a sound wave travelling through the air.

(a) What is the amplitude of the section labelled $\mathbf{A}-\mathbf{B}$?

Answer \qquad m [1]

(b) (i) What is the wavelength of the section labelled $\mathbf{B}-\mathbf{C}$?

Answer \qquad m [1]
(ii) Sound waves travel at a speed of $330 \mathrm{~m} / \mathrm{s}$ in air.

Use the equation:

$$
\text { frequency }=\frac{\text { speed }}{\text { wavelength }}
$$

to calculate the frequency of the section labelled $\mathbf{B}-\mathbf{C}$.
(Show your working out.)

Answer \qquad Hz

4 (a) Explain fully how fossil fuels are formed.
(b) The table below shows the electrical energy (GWh) generated in Northern Ireland from different energy sources between 2008-2012.

Energy source	$\mathbf{2 0 0 8}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 0}$	2011	2012
Coal	2077	1402	1858	1450	2403
Hydroelectric	26	31	36	20	21
Wind, wave, solar	568	754	639	893	1047
Oil	369	112	107	88	79
Gas	6568	5674	4884	5397	3732
Total	9608	7973	7524	7848	7282

(i) Name all the fossil fuels shown in the table above.
\qquad
(ii) Give the trend in total energy generated between 2008-2012. Describe the significant changes in the energy sources used over this period.
\qquad
\qquad
\qquad
\qquad
(c) A company is proposing to develop an offshore wind farm fifteen kilometres off the coast of Northern Ireland. This would involve up to 100 turbines.
Discuss the advantages and disadvantages of the plan to build this wind farm.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad

5 (a) The graph below shows how thinking distance changes with speed.

(i) On the same axes plot a graph for braking distance using the results below. The first four points have already been plotted.

Speed/mph	Braking distance/m
0	0
10	2
20	6
30	14
40	24
50	38
60	55

(ii) Use the information to calculate the stopping distance for a car travelling at 60 mph .

Answer \qquad m [1]
(b) The distances given in part (a) are for a car on a dry road.

What effect, if any, would a wet road have on:

1. thinking distance?
\qquad
2. braking distance? Explain your answer in terms of forces.
\qquad
\qquad
\qquad
(c) Explain fully why drinking alcohol may increase the risk of a driver being involved in a car crash.
\qquad
\qquad
(d) The table below shows the number of fatal accidents which occurred on different types of roads, in different conditions, in Great Britain during 2012.

	Daylight			Darkness		
	Dry	Wet	Snow	Dry	Wet	Snow
Motorway	27	8	1	22	21	1
Built up area	354	106	3	154	120	8
Countryside	355	119	12	160	153	11

Data taken from DFT STATS19

Compare the overall results shown for dry roads in daylight with dry roads in darkness and suggest one reason for the difference.
\qquad
\qquad
\qquad

6 The diagram below shows the parts of a fossil fuel power station including a step-up transformer.

© GCSE Single Award Science for CCEA by Theo Laverty, James Napier, Roy White. Published by Hodder Education, 2006. ISBN 978-0-340-92600-0. "Reproduced by permission of Hodder Education".
(a) Explain fully why the electricity is passed through a step-up transformer before going into the grid.
\qquad
\qquad
\qquad
\qquad
(b) State the energy changes which take place:
when the fuel is burnt \qquad
\qquad
in the boiler \qquad
\qquad
in the generator \qquad
\qquad

7 The diagram below shows a bobsleigh and athlete.

© Rocich/iStock/Thinkstock
(a) The athlete and bobsleigh had a momentum of $4140 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.

Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the velocity of the bobsleigh.
(Show your working out.)

Answer \qquad m / s [2]
(b) Explain fully, in terms of forces, why the bobsleigh increases speed as it moves downhill.
\qquad
\qquad
\qquad
\qquad

8 (a) James blows a whistle and a short time later he hears the echo.

(i) Explain fully why he hears the sound of the whistle twice.
\qquad
\qquad
\qquad
(ii) James uses a stopwatch to measure the time between blowing the whistle and hearing the whistle for a second time. The stopwatch records a time of 1.2 s . The speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Use the equation:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

to calculate James' distance from the wall.
(Show your working out.)
\qquad m
(b) The flash-bang method can be used to measure the speed of sound in air.

Describe fully how the flash-bang method is used to measure the speed of sound accurately.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad

9 (a) The table below gives the distance to some galaxies and the speed they are moving away from Earth.

Name of Galaxy	Distance from Earth/light years $\left(\times \mathbf{1 0}^{6}\right)$	Speed away from Earth/ $\mathrm{m} / \mathrm{s}\left(\times \mathbf{1 0}^{4}\right)$
M110	2.8	6
Sextans B	4.8	10
Dwingloo 1	9.0	20
Maffei 1	9.8	21
Holmberg 11	11.2	23

(i) Describe the trend shown by this data.
\qquad
\qquad
(ii) In what way would the red shift from Holmberg 11 differ from Sextans B?
\qquad
(b) The diagram below shows the Geocentric model of the Solar System.

The planets Uranus and Neptune are missing from this model of the Solar System. Suggest one reason why they are not shown.
\qquad
\qquad
(c) The graph below represents two possible theories for the formation of the Universe.

Use the graph to give two main differences between the Big Bang theory and the Steady State theory.
\qquad
\qquad
\qquad
(

10 The picture below shows a microwave oven.

(a) Explain fully how the rays in a microwave oven heat food.
\qquad
\qquad
\qquad
\qquad
(b) Thermal imaging cameras are often used to search for people (body temperature $37^{\circ} \mathrm{C}$) trapped in buildings. The camera produces a colour picture; each colour represents a different temperature and infrared wavelength as shown below.

Image colour	Temperature of object $/^{\circ} \mathrm{C}$	Infrared wavelength/m
orange-yellow	38	9.34×10^{-6}
orange	36	9.40×10^{-6}
red-orange	34	9.46×10^{-6}
red	32	9.52×10^{-6}

Using the information provided, predict the wavelength emitted by a trapped person.

Answer \qquad m [1]

11 (a) The photograph below shows a rheostat (a variable resistor).

© CCEA

Describe fully how a variable resistor changes the current in a circuit.
\qquad
\qquad
\qquad
\qquad
(b) The table shows how diameter and wire type affect resistance.

Diameter of wire /mm	Resistance of wire/ ohms per metre	
	nichrome	copper
0.05	550	8.7
0.08	215	3.4
0.09	170	2.7
0.10	138	2.1
0.12	47.6	1.5

Give two conclusions provided by the data.
\qquad
\qquad
\qquad
\qquad

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

