Centre Number

71

Candidate Number

General Certificate of Secondary Education 2013–2014

Science: Single Award

Unit 3 (Physics)

Higher Tier

[GSS32]

WEDNESDAY 26 FEBRUARY 2014, MORNING

TIME

1 hour 15 minutes, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all eleven** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75.

Figures in brackets printed at the end of each question indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Questions **3** and **7(a)**.

1 Pilots are exposed to higher levels of radiation because they spend long periods of time at high altitudes (heights)

The table below shows the amount of radiation (dose) received by pilots travelling to different destinations from Belfast.

Destination	Flight time/hrs	Amount of radiation/mSv
Paris	1.75	8.34
New York	7.7	50.00
Sharm El Sheikh	6.2	24.18
Manchester	1.0	1.82

(ii) Background radiation causes this increase in dose.
 Suggest one possible source of radiation which could affect the pilots at this height. [1 mark]

 (iii) The maximum safe radiation dose for pregnant women is 2000 mSv.
 Use this information to calculate the maximum number of return flights a woman should make to New York during a pregnancy. [2 marks] (Show your working out.)

(iv) Explain fully how radiation can harm humans. [2 marks]

9077.02 MV18

BLANK PAGE

(Questions continue overleaf)

2 (a) The table below shows the count rate of a radioactive isotope.

Time/days	Count rate/cps
0	120
2	76
4	48
6	30
8	19

- (i) Plot these points on the axes opposite and draw a curve of best fit. [3 marks]
- (ii) Use the graph opposite to find the half-life of the radioactive isotope. [1 mark]

Answer	 days
Answer	 day

(b) Radioactive phosphorus has a half-life of 20 days. What fraction of the original mass of phosphorus will be left after 40 days? [1 mark]

Answer _____

3 The photograph below shows the Sun, our closest star.

Describe fully the formation of the Sun, naming the gases and forces involved. [6 marks]

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

4 (a) The table below shows information on generating electrical power.

	Tidal	Coal	Wind	
	Tidal		Onshore	Offshore
Power output/ MW	12	1600	24	94
Life expectancy/ years	15	30	20	20
Annual operating costs per kW/£	56	24	24	57
Generating costs per kWh/p	6.63	3.33	5.35	7.19

(i) The government want to replace fossil fuel power stations with alternative sources.Use the information to explain fully why this might not be the best option. [3 marks]

- (ii) Give **two** reasons why more alternative energy sources are being introduced. [2 marks]
 - 1.

 2.
- (b) Explain fully the formation of fossil fuels from dead plants and animals. [2 marks]

(c) Given below are some of the processes involved in producing electricity using a coal fired power station.

A	The coal produces heat	The boiler produces steam	The steam turns the blades of the turbine to make electricity directly
В	The coal produces heat	The heat turns the blades of the turbine	The turbine turns the generator which produces electricity
С	The boiler produces steam	The steam turns the blades of the turbine	The turbine turns the generator which produces electricity
D	The turbine heats the boiler	The boiler produces steam	The steam turns the generator which produces electricity

Which letter **A**, **B**, **C** or **D** gives the correct order of processes? [1 mark]

Answer _____

BLANK PAGE

(Questions continue overleaf)

5 The graph below shows a wave.

- (a) Use the information in the graph on page 14 to answer the following questions.
 - (i) What is the wavelength of this wave? [1 mark]

Answer _____ m

(ii) What is the amplitude of this wave? [1 mark]

 m

(b) Describe fully the movement of particles in a transverse wave. [2 marks]

(c) Ultrasound can be used to measure the depth of the sea as shown in the diagram below.

(i) Ultrasound travels at 1500 m/s in water.

The ship sends out an ultrasound pulse and the echo returns 6 seconds later. [3 marks]

Use the equation:

distance = speed × time

to calculate the depth of the water. (Show your working out.)

Answer_____ m

(ii) How will the captain of the ship know if a shoal of fish swims under the ship? [1 mark]

(d) Ultrasound can have a frequency of 30000 Hz. [2 marks]

Use the equation:

wavelength = $\frac{\text{speed}}{\text{frequency}}$

to calculate the wavelength of this ultrasound. (Show your working out.)

Answer _____ m

6 (a) SAR (specific absorption rate) is a measurement of how much radiation is absorbed by body tissue. The higher the value the more radiation is absorbed. The diagrams below show how microwaves penetrate the brain when using a mobile phone.

Penetration by microwaves

Use the information to explain fully why it may be dangerous for 5 year olds to use mobile phones. [2 marks]

(b) The graph below shows how the SAR is affected by the distance of the phone from the head.

(i) Describe fully the trend shown by the graph.[2 marks]

(ii) Apart from increasing the distance of a mobile phone from the head suggest **two** ways mobile phone users can reduce their exposure to microwave radiation. [2 marks]

1			
2.			
-			

7 (a) Describe, in detail, an investigation to find how the thickness of a wire affects its resistance. State the conclusion you would expect. [6 marks]

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

(b) (i) Describe how a variable resistor changes the current in a circuit. [1 mark]

- (ii) Give an example of where a variable resistor is used. [1 mark]
- (c) On the circuit below, draw an arrow to show the direction of electron flow at position **X**. [1 mark]

8 (a) The diagram below gives the mass and momentum of a van as it hits a wall.

Use the equation:

momentum = mass × velocity

to calculate the velocity of the van at impact. [2 marks] (Show your working out.)

_ <u>m</u>	/s
	<u>m</u>

- (b) When the van collides with the wall some of the energy is absorbed. Give one feature of the van designed to absorb this energy. [1 mark]
- (c) Car manufacturers are trying to minimise the reliance on fossil fuels by using substitutes and extenders. Explain fully the difference between substitutes and extenders. [2 marks]

(d) Give an example of a fuel substitute and a fuel extender. [2 marks]

Substitute

Extender _____

(e) The diagrams below show two shuttlecocks (A and B) falling.

(i) Describe and explain the motion of shuttlecock **B**. [2 marks]

(ii) What is the value of the resultant force on shuttlecock **A**? [1 mark]

Answer _____ N

BLANK PAGE

(Questions continue overleaf)

9 The first self-adjustable glasses were invented by Professor Josh Silver.

He used liquid-filled lenses that could change shape as shown below.

9077.02 MV18

(a) Complete the diagram below to show how the rays of light pass through these lenses. [2 marks]

 (b) Long sight is caused by a weak lens which does not converge the light enough.
 Describe the effect of long sight and suggest how these self-adjustable glasses can provide the greater convergence required. [3 marks]

- **10 (a) (i)** What name is given to the present model of the Solar System? [1 mark]
 - (ii) What is the main difference between this model of the Solar System and the model proposed hundreds of years ago? [1 mark]

- (b) Based on the Big Bang Theory how old is the Universe thought to be? [1 mark]
- (c) Give an alternative scientific theory to the Big Bang.[1 mark]

(d) When astronomers look at light from galaxies they see the following black lines in their spectrum.

Describe fully what this information suggests to astronomers about galaxy C compared to galaxy B. [2 marks]

11 The table below gives information about electromagnetic radiation.

Radiation	Wavelength range/m
radio waves	1 × 10 ⁶ to 1 × 10 ⁻¹
microwaves	1 × 10 ⁻¹ to 1 × 10 ⁻³
infrared	1×10^{-3} to 7×10^{-7}
visible	7 × 10 ⁻⁷ to 4 × 10 ⁻⁷
ultraviolet	4 × 10 ⁻⁷ to 1 × 10 ⁻⁸
X-rays	1 × 10 ⁻⁸ to 1 × 10 ⁻¹³
gamma rays	1 × 10 ⁻¹⁰ to 1 × 10 ⁻¹⁶

- (a) Which radiation has the smallest **range** of wavelengths? [1 mark]
- (b) Name the radiation which is most damaging to the body. Explain your choice fully. [3 marks]

THIS IS THE END OF THE QUESTION PAPER

SOURCES

Pg 2, Q1, Photograph of an aeroplane, © Victor De Schwanberg / Science Photo Library

- Pg 8, Q3, Photograph of the Sun, © NASA/SDO
- Pg 24, Q8(a), Image of a van, © Kamaga / iStock / Thinkstock
- Pg 28, Q9, Photograph of self adjustable glasses, © The Centre for Vision in the Developing World

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
Total Marks		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.