Rewarding Learning

General Certificate of Secondary Education 2013-2014

Science: Single Award

Unit 3 (Physics)

Higher Tier

[GSS32]
\qquad
Candidate Number

\qquad

而

1 (a) The table below shows the braking distance for a car at different speeds.

Speed/mph	Braking distance/m
0	0
20	6
30	14
50	38
70	75

(i) Plot and draw a line graph for these results.

(ii) State the trend shown by these results.
\qquad
\qquad
(iii) These results are for a dry road. On the same grid above, sketch the line you would expect if the road was wet.
(b) The table shows the increased risk that drivers will crash as their Blood Alcohol Content (BAC) rises.

BAC/ $\mathbf{m g} / \mathbf{1 0 0} \mathbf{~ m l}$	Increased risk of having a crash
40	1.4
80	3.8
120	14.7
160	32.2

The legal limit for a driver's BAC is $80 \mathrm{mg} / 100 \mathrm{ml}$. Using the information and your knowledge, describe and explain fully the effect that alcohol has on driving and why many road safety campaigners suggest that the current limit is too high.
\qquad
\qquad
\qquad
\qquad
\qquad

2 The diagram below represents a sound wave.

(a) What is the wavelength of this sound wave?

Answer \qquad
(b) (i) Use the equation:

$$
\text { speed }=\text { wavelength } \times \text { frequency }
$$

to describe how wavelength changes as frequency increases.
(Assume speed remains the same.)
\qquad
(ii) State the units of frequency.

Answer
(c) The device below is used to measure distance.

© Victor De Schwanberg / Science Photo Library

To find the length of a hall the device measures the time taken for an ultrasound wave to travel to a wall and back.
(i) Describe fully why we cannot hear the sound produced by this measuring device.
\qquad
\qquad
\qquad
(ii) A signal takes 0.4 s to travel from one wall of a hall to the opposite wall and back. The speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Use the equation:

$$
\text { distance }=\text { speed } \times \text { time }
$$

to calculate the length of the hall.
(Show your working out.)

3 (a) The graph below shows how the (orbital) speed of a planet relates to its approximate distance from the Sun.

(i) Use the graph to find how far Venus is from the Sun.

Answer \qquad million km [1]
(ii) Using information from the graph, compare the speed and distance from the Sun of Mercury and Neptune.
\qquad
\qquad
\qquad
\qquad
(b) This information describes the Heliocentric model of the Solar System.

Give two differences between this model and the Geocentric model.
1.
2.

4 The picture below shows a 3-pin plug about to be wired.
The colours of each wire and the plug pins are labelled.

Source: Principal Examiner

Describe fully how the plug should be wired correctly, naming and explaining one safety feature found in the plug.

Your answer should:

- use the labels provided
- name the labelled parts.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad

5 (a) The diagram below shows how electricity is distributed from the power station to our homes.
(i) What name is given to the network of cables and pylons that distributes electricity?
\qquad
(ii) In the correct boxes on the diagram below, name the transformer types and label the voltages as low or high.
(iii) Explain fully why the voltage is changed before electricity is distributed from the power station.
\qquad
\qquad
\qquad

(b) The diagram below shows a dynamo. When the magnet is turned inside the coil, electricity is produced.

Name the part of a power station that produces electricity in the same way as the dynamo.
\qquad
(c) The table below shows how the amount of current produced by the dynamo changes with magnet speed.

Magnet speed/ r.p.m.	Current produced/ $\mathbf{m A}$
0	0
20	2.2
30	2.9
40	4.4
50	5.0
60	5.0
70	5.0

(i) State fully the trend shown by these results.
\qquad
\qquad
\qquad
(ii) Apart from magnet speed, name one other factor that will change the amount of current produced by the dynamo.
\qquad

6 Below are three electrical appliances that can heat water.

(a) Explain fully how a microwave oven heats water.
\qquad
\qquad
\qquad
(b) Adrian carries out an investigation to find the best way to boil water for

	Electric Kettle	Microwave oven	Electric cooker ring
Average time to boil/mins	3.05	2.95	6.0
Power of appliance/W	850	1350	2500
Electrical energy used/kWhr	0.043	0.066	

(i) State two things that must be done to make the investigation fair.

1. \qquad
\qquad
2. \qquad
\qquad

Abstract

tea. His results are shown in the table below.

(ii) Use the equation:
energy used $=$ power \times time
to calculate the electrical energy used by the electric cooker ring.
(Show your working out.)

Answer \qquad kWhr [3]
(iii) Adrian wants to make the cup of tea quickly and cheaply. Explain fully why he decides to use the electric kettle.
\qquad
\qquad
\qquad

7 (a) Radioactive sources can be used to trace problems inside the human body. The source is put into the body and the radiation emitted is detected outside the body. This produces images as shown in the picture below.

© Prof. J. Leveille / Science Photo Library

The table below gives information on four radioactive sources.

Source	Half-life	Radiation emitted
A	4 days	alpha
B	6 hours	gamma
C	10 years	beta
D	10 years	gamma

Which source would be the most suitable to use? Explain fully your answer.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The table below shows how the count rate of a radioactive source changes with time.

Time/mins	0	10	20	30	40
Count rate/cpm		1024	512	256	128

(i) What is the half-life of this source?

> Answer
\qquad mins [1]
(ii) Calculate the count rate at 0 minutes.

Answer \qquad cpm
(c) The graph below shows the results of an experiment to find the range of a type of radiation in air.

(i) What is the count rate when the detector is 6 cm from the source?

Answer \qquad cpm [1]
(ii) Name the type of radiation being tested in this experiment.

Explain your answer fully by referring to all types of radiation.
\qquad
\qquad
\qquad
(iii) Explain why the count rate does not fall to zero.
\qquad

8 The table below gives efficiency figures in miles per gallon (mpg) for some cars on different road types.

Model	Motorway/ mpg	Town/ mpg	Combined/ mpg
VW Jetta TDi	42	30	34
Smart For Two	41	33	36
Ford Fiesta	40	29	33
Hyundai Elantra	40	29	33
Toyota Prius Hybrid	48	51	50
Honda Civic Hybrid	43	40	41
Lexus CT200 Hybrid	40	43	42
Honda Insight Hybrid	43	40	41

(Data taken from a range of comparative websites.)
(a) Using the information in the table and your knowledge, explain how hybrid engines can help reduce our reliance on fossil fuels. Your answer should include a full description of what fossil fuels are and why it is important to reduce their use.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\qquad
(b) Apart from hybrid engines, give two other strategies developed by car manufacturers to reduce reliance on fossil fuels for transport.

1. \qquad
2.

(c) The Toyota Prius gives the most miles per gallon.

Using the equation:

$$
\text { efficiency }=\frac{\text { useful energy output }}{\text { total energy input }}
$$

explain fully why the Toyota Prius is the most efficient car shown in the table.
\qquad
\qquad
\qquad

9 The diagram below shows a hammer striking a nail into a block of wood.

The mass of the hammer is 1.2 kg and the nail is 200 g . The velocity of the hammer just before it hits the nail is $14 \mathrm{~m} / \mathrm{s}$.
(a) (i) Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the momentum of the hammer just before it hits the nail.
(Show your working out.)

Answer
(ii) State the units of momentum.

Answer \qquad
\qquad
(b) The picture below shows an aeroplane accelerating during take off.

(i) Explain fully, the movement of the plane in terms of the forces shown.
\qquad
\qquad
\qquad
\qquad
(ii) When cruising the plane flies at a constant speed and height. State the relationship between the forces ($\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}) when cruising.
\qquad
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

Sources:

Kettle_142270279_iStockphoto_Thinkstock.com
Microwave_124793760_iStockphoto_Thinkstock.com
Oven hob_99013282_Hemera_Thinkstock.com
Passenger plane_95714676_iStockphoto_Thinkstock.com

