

Rewarding Learning

General Certificate of Secondary Education 2012-2013

Science: Single Award

Unit 3 (Physics)
Foundation Tier
[GSS31]

WEDNESDAY 14 NOVEMBER 2012, AFTERNOON

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.
Write your answers in the spaces provided in this question paper.
Answer all eight questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 60 .
Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question 8(a).
\qquad

For Examiner's use only	
Question Number	Marks
1	
2	
3	
4	
5	
6	
7	
8	
Total Marks	

Candidate Number
\qquad

Quaity ofren
.

1 (a) The table below gives some information about the planets in our Solar System.
(i) Complete the table below by naming the first planet.

Planet	Distance from the Sun /million km	Surface temperature ${ }^{\circ} \mathrm{C}$
Venus	58	430
Earth	108	470
Mars	150	22
Jupiter	778	-238
Saturn	1427	-150
Uranus	2870	-180
Neptune	4497	-210

(ii) Using the information above suggest why humans would find it impossible to live on Venus.
\qquad
\qquad
(b) Complete the following sentences.

Choose from:

$$
\begin{array}{r}
\text { fusion }: \text { star }: \text { friction } \\
\text { planet }: \text { gravity : fission }
\end{array}
$$

The Sun is our nearest \qquad it is made from a gas
called hydrogen. This gas is pulled together by the force of
\qquad This gas is used to make energy in a nuclear process called \qquad .

BLANK PAGE

(Questions continue overleaf)

2 (a) The circuit below uses meters 1 and 2 to measure current and voltage.

(i) What type of meter is placed at position 1 to measure current? Circle the correct answer.

```
newtonmeter : ammeter : voltmeter
```

(ii) Complete the following sentences.

Choose from:

In this circuit meter 2 is connected in \qquad and the bulbs are connected in \qquad . If one of the
bulbs is broken the other bulb \qquad .

```
            parallel : goes out
```

 parallel : goes out
 gets dimmer : stays lit : series

```
gets dimmer : stays lit : series
``` bulb is broken the other bulb .
(b) A student set up the following circuit.

Complete the table to show if the bulbs are lit or not lit for the switch positions given.

Use a tick \((\boldsymbol{\checkmark})\) to show if the bulb is lit and a cross \((\boldsymbol{\checkmark})\) if it is not lit.
\begin{tabular}{|c|c|c|c|}
\hline Switch 1 & Switch 2 & Bulb A & Bulb B \\
\hline open & open & & \\
\hline closed & open & & \\
\hline
\end{tabular}

3 The diagram below shows a car moving on a flat straight road.

(a) Which diagram \(\mathbf{A}, \mathbf{B}, \mathbf{C}\) or \(\mathbf{D}\) shows the correct direction in which friction acts?

Answer
(b) Complete the sentence below.

Friction is a \(\qquad\) which \(\qquad\) moving objects.
(c) Shown below is a distance-time graph for a car.

(i) Describe the motion of the car from \(\mathbf{A}\) to \(\mathbf{B}\).

Choose from:
```

stopped : steady speed : accelerating

```

Answer \(\qquad\)
(ii) Use the graph to find the distance the car travels in the first two

Answer \(\qquad\) m [1]
(iii) Use the equation:
\[
\text { speed }=\frac{\text { distance }}{\text { time }}
\]
to calculate the speed of the car in the first two seconds.
\(\qquad\) \(\mathrm{m} / \mathrm{s}\) [1]
seconds.
evara

4 (a) The bar graph below shows how the use of two types of phone increases the risk of developing cancer.

(i) State two trends shown by this graph.
1. \(\qquad\)
\(\qquad\)
2. \(\qquad\)
\(\qquad\)
(ii) Name the part of the body most likely to develop cancer when
using these phones.
\(\qquad\)
.

The diagram below shows a mobile phone network.

© CCEA GCSE Single Award in Science Foundation Tier by A McFarland, C Murphy \& J Napier, page 113, published by Hodder Education, 2009. ISBN 9780340974728. "Reproduced by permission of Hodder Education".
(b) Using the diagram explain fully how a signal goes between phone \(\mathbf{X}\) and phone \(\mathbf{Y}\).
\(\qquad\)
\(\qquad\)
\(\qquad\)
(c) Given below are some types of electromagnetic radiation and some uses. Using lines link each type to one common use.

Radiation
Use

infrared

gamma rays

5 (a) The table below shows the braking distance at different speeds.
\begin{tabular}{|c|c|}
\hline \begin{tabular}{c}
Speed \\
\(\mathbf{k m} / \mathbf{h r}\)
\end{tabular} & Braking distance/m \\
\hline 15 & 1 \\
\hline 30 & 5 \\
\hline 45 & 12 \\
\hline
\end{tabular}

Draw a bar graph for the braking distance on the grid below.

(b) The table below shows how the braking and thinking distances can be affected by the number of people in a car at different speeds.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Speed \\
\(\mathbf{k m} / \mathrm{hr}\)
\end{tabular}} & \multicolumn{2}{|c|}{ braking distance/m } & \multicolumn{2}{c|}{ thinking distance/m } \\
\cline { 2 - 5 } & \begin{tabular}{c}
car and \\
driver \\
only
\end{tabular} & \begin{tabular}{c}
car, driver and \\
three \\
passengers
\end{tabular} & \begin{tabular}{c}
car and \\
driver \\
only
\end{tabular} & \begin{tabular}{c}
car, driver and \\
three \\
passengers
\end{tabular} \\
\hline 15 & 1 & 3 & 3 & 3 \\
\hline 30 & 5 & 7 & 6 & 6 \\
\hline 45 & 12 & 14 & 8 & 8 \\
\hline 60 & 21 & 23 & 11 & 11 \\
\hline
\end{tabular}
(i) Calculate the stopping distance for a car with a driver and three passengers travelling at \(60 \mathrm{~km} / \mathrm{hr}\).

Answer \(\qquad\) m [1]
(ii) Explain fully what is meant by the term 'braking distance'.
\(\qquad\)
\(\qquad\)
(iii) In what way, if any, does the thinking distance change if the car has passengers?
\(\qquad\)
\(\qquad\)
(c) The table below is used by crash investigators to work out how fast a car was travelling before a collision. They do this by measuring the length of a skid.
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c}
Length of skid \\
/m
\end{tabular}} & \multicolumn{3}{|c|}{ Initial speed on different surfaces } \\
\cline { 2 - 4 } km/hr & Dry tarmac & Wet tarmac & Ice \\
\hline 1 & 13.4 & 11.8 & 6.2 \\
\hline 2 & 18.8 & 16.7 & 8.7 \\
\hline 3 & 23.1 & 20.5 & 10.7 \\
\hline 4 & 26.7 & 23.6 & 12.3 \\
\hline 5 & 29.8 & 26.4 & 13.4 \\
\hline
\end{tabular}
(i) Suggest two factors which must have been kept the same to make sure the results were valid.
1. \(\qquad\)
2. \(\qquad\)
(ii) How many times longer is a skid on ice compared to a skid on dry tarmac at \(13.4 \mathrm{~km} / \mathrm{hr}\) ?
(iii) State two conclusions that can be seen from the results in the table.
1. \(\qquad\)
2.

\section*{BLANK PAGE}
(Questions continue overleaf)

6 (a) Slinky springs are often used to demonstrate waves as shown in the diagrams \(\mathbf{A}\) and \(\mathbf{B}\) below.

© CCEA GCSE Single Award in Science Foundation Tier by A McFarland, C Murphy \& J Napier, page 109, published by Hodder Education, 2009. ISBN 9780340974728. "Reproduced by permission of Hodder Education".
(i) Name the type of wave represented by diagram \(\mathbf{A}\).
\(\qquad\)
(ii) Describe fully how point \(\mathbf{X}\) moves as the wave passes along the slinky in diagram \(\mathbf{A}\).
\(\qquad\)
\(\qquad\)
(iii) What is the amplitude of the wave represented by diagram \(\mathbf{B}\) ?

Answer \(\qquad\) m [1]
(iv) What is the wavelength of the wave represented by diagram \(\mathbf{B}\) ?

Answer \(\qquad\) m [1]
(b) Wave B produces 20 complete waves in 5 seconds.

Calculate the frequency of the wave.
Answer \(\qquad\) Hz [1]
(c) Use the equation:
\[
\text { speed }=\text { frequency } \times \text { wavelength }
\]
to calculate the speed of a wave with a frequency of 20 Hz and a wavelength of 90 m .
(Show your working out.)
\(\qquad\) m/s [2]

7 (a) The diagram below shows two parallel rays of light entering the eye. Complete the diagram to show the path of the rays in the formation of a clear image.

(b) (i) Short sight is a common eye defect. Explain fully the cause and effect of short sight.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
(ii) Name the type of lens used to correct short sight.
\(\qquad\)
(b) (i) effect of short sight.

8 (a) The photograph below shows the radioactive source found in a smoke alarm.

© Martin Bond / Science Photo Library

Describe a simple experiment to show which type of radiation (alpha, beta or gamma) is emitted by the radioactive source in the smoke alarm.

Your answer should include one way to ensure valid results.
In this question you will be assessed on your written communication skills including the use of specialist scientific terms.
\(\qquad\)
(b) The equipment shown below is used in industry to monitor the thickness of aluminium foil.

The table below gives possible radioactive sources which could be used.
\begin{tabular}{|c|c|c|}
\hline Radioactive source & Radiation emitted & Half-life \\
\hline A & alpha & 1000 years \\
\hline B & beta & 1000 years \\
\hline C & beta & 2 minutes \\
\hline D & gamma & 4 years \\
\hline
\end{tabular}
(i) Explain fully what is meant by the term 'half-life'.
\(\qquad\)
\(\qquad\)
(ii) Which source, \(\mathbf{A}, \mathbf{B}, \mathbf{C}\) or \(\mathbf{D}\) would be best to monitor the thickness of the aluminium? Explain your answer.

Source
Explanation \(\qquad\)
\(\qquad\)
\(\qquad\)

\title{
THIS IS THE END OF THE QUESTION PAPER
}

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notif ed```

