

Ce	ntre Number
71	
Cano	didate Number

General Certificate of Secondary Education 2012–2013

Science: Single Award

Unit 2 (Chemistry)

Higher Tier

[GSS22]

TUESDAY 13 NOVEMBER 2012, MORNING

TIME

1 hour 15 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all ten** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 75.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. A Data Leaflet, which includes a Periodic Table of the elements, is

provided for your use.

Quality of written communication will be assessed in questions **4** and **8**.

For Examiner's use only					
Question Number	Marks				
1					
2					
3					
4					
5					
6					
7					
8					
9					
10					
Total Marks					

8104

Some students compared the reactivity of four metals (cobalt, iron, copper and magnesium) by adding a small amount of each to sulfate solutions of the other metals. If there was a reaction they used a tick (✓), for no reaction they used (✗).

Examiner Only

Marks Remark

The results are shown below.

Solution Metal	Cobalt sulfate	Iron sulfate	Copper sulfate	Magnesium sulfate			
Cobalt		×	1	×			
Iron	<i>√</i>		1	×			
Copper	×	×		×			
Magnesium	1	1	1				
(a) Use the information in the table and your knowledge to answer the following questions.							

- (i) Which metal is the most reactive? _____ [1]
- (ii) Which metal is the least reactive? _____ [1]
- (iii) Give **two** observations you would make when magnesium is added to copper sulfate solution.

1.______ 2.______[2]

(b) Complete the word equation for the reaction of magnesium with iron sulfate.

(c)	c) Elements and compounds can be represented by chemical symbols, but they must be written correctly. Give the correct formula for the compounds copper sulfate and magnesium chloride.								
	(You may find your Data Leaflet helpful.)								
	Circ	le the correct a	answers.						
	(i)	copper sulfate							
		CuSO ₄	CoSu	CuSO ₂	CUSO4	[1]			
	(ii)	magnesium ch	loride						
		MGCI	Mgcl ₂	МС	MgCl ₂	[1]			

The table below shows some information about the elements that are found in Period 3 of the Periodic Table.

Name of element	Sodium	Magnesium	Aluminium	Silicon	Phosphorus	Sulfur	Chlorine	Argon
Symbol	Na	Mg	AI	Si	Si P S CI		Ar	
Atomic number	11	12	13	13 14 15 16 17		17	18	
Melting point/°C	98	639	660	1410	44	113 –101		-189
Boiling point/°C	883	1090	2467	2680 280 445 -35		-35	-186	
Metallic character	Metal	Metal	Metal	Semi- metal	Non-metal	Non- metal	Non- metal	Non- metal

Use que	e this information and your knowledge to answer the following stions.		Examine Marks	er Only Remar
(a)	Name the metal which has the highest melting point.			
		[1]		
(b)	Describe the trend in the metallic character across Period 3.			
		[1]		
c)	Name an element from the table that is a gas at room temperature (25 $^{\circ}$ C).			
		[1]		

The diagram shows an atom of boron.

(d) The table below contains information about the structure of four elements W, X, Y and Z.

elements W, X	, Y and Z .				Marks	Remark
Element	Number of protons	Number of neutrons	Number of electrons			
W	2	2	2			
Х	11	12	11			
Y	20	20	20			
Z	8	8	8			
 (You may find) (i) Calculate t (ii) Name the (iii) Which eler 	your Data Leafle he mass numbe element X . ment (W , X , Y , Z	et helpful.) er of element Y .	ns in its outer sl	[1] [1] hell? [1]		
(iv) Which eler	ment (W , X , Y , Z) is a noble gas?	?			
				[1]		

Examiner Only

		e metal in a compound		Examine Marks
Explain how you potassium chlori	would carry out a flar de and sodium chloric	ne test experiment on le.	solutions of	
Your answer sho	ould include:			
 any safety p the results y 	recautions ou would expect to se	e		
In this question skills including	you will be assesse the use of specialis	ed on your written cor t scientific terms.	mmunication	
			[6]	

5 The table below gives information about some materials.

Material	Relative heaviness	Relative strength	Relative stiffness	Relative cost
Steel	7800	10	105	low
Kevlar	1500	30	95	very high
Carbon fibre reinforced plastic	1600	18	100	high
Glass fibre reinforced plastic	1900	15	10	high

(a) Using the information in the table and your knowledge of materials, give **two** reasons why carbon fibre reinforced plastic has replaced traditional metals such as steel in manufacturing golf clubs.

1		
2.		
		[2]

(b) Carbon fibre reinforced plastic can be used as supporting cables in the structure of suspension bridges. Using the information in the table and your knowledge of materials, choose a material that may be more suitable and explain your choice.

(c) Glass fibre reinforced plastic and carbon fibre reinforced plastic are both described as composite materials. What is meant by the term composite material?

_____ [2]

__ [2]

Examiner Only Marks Remark The Marble Arch Caves are found in Fermanagh which is a hard water Examiner Only Marks Remark area. © Northern Ireland Tourist Board (a) Give an economic benefit that the caves bring to the Fermanagh area. _____ [1] (b) Other than taste, give an **advantage** of drinking hard water. _____ [1] (c) Hard water forms undesirable deposits of calcium carbonate in kettles and hot water pipes. Complete the balanced symbol equation for this reaction.

6

(d) The deposits of calcium carbonate inside a kettle are often described Examiner Only Marks Remar as 'fur'. Kettle 'fur' can be removed by reacting it with an acid. Complete the word equation below for this reaction. calcium hydrochloric +water +acid carbonate [2] (e) A student conducted the following investigation into the hardness of different samples of water. She put 25 cm³ of four different samples P, Q, R, S into separate flasks. She added soap solution to each flask and shook until a lather was formed. She repeated the experiment with boiled samples. The results are shown below. Height of lather **Height of lather** Sample before boiling/mm after boiling/mm Ρ 5 5 Q 20 19 R 28 28 S 4 20 (i) The student concluded that samples **Q** and **R** were soft water. Using the information in the table explain why she is correct. _ [2] (ii) What can be concluded about the type of water in sample S? Explain your answer. [2]

7 James added sodium hydrogencarbonate to a conical flask that contained acid. He measured the amount of carbon dioxide gas produced over a period of 180 seconds. His results are shown below.

Examiner Only

Marks Remar

Time/s	0	30	60	90	120	150	180
Carbon dioxide collected/cm ³	0	12	18	22	25	27	27

(a) Plot and draw a line graph for these results on the grid below. The first two points are plotted for you.

(b)	At what time did the reaction finish?			Examin	er Only
			_s [1]	Warks	Remark
(c)	To improve the reliability of the results J following?	lames should do which of	the		
	Tick (\checkmark) the correct box.				
	Repeat the experiment at least once				
	Do the experiment for a longer period				
	Use stronger acid		[1]		

8 Ideas on the formation of the continents have been debated since 1597 but a full explanation wasn't developed until 1915 when Alfred Wegener put forward his theory of continental drift. However, it wasn't until 1960 that scientists accepted his theory as being correct.

Map showing the relative positions of South America and Africa millions of years ago.

Use the information above and your knowledge to explain Alfred Wegener's theory including the evidence that supports it and reasons why other scientists rejected it.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

		[6]

Examiner Only Marks Remark

9	Wh carl	/hen hydrocarbon fuels burn, oxygen from the air combines with atoms of arbon and hydrogen.Examiner Only MarksMarksRemark										
	The	ne word equation for the combustion of propane is given below.										
	propane +		oxygen		carbon dioxide	+	water					
	(a)	Wri	Write the balanced symbol equation for the combustion of propane.					ropane.				
									[3]			
	(b) During the combustion of any fuel, carbon dioxide is formed. Describ a chemical test that could be carried out to identify carbon dioxide including the results you would expect.							Describe oxide				
									[2]			
	(c)) Magnesium burns in air to form magnesium oxide.										
		(i) As well as a combustion reaction, this reaction can be described as an oxidation reaction. What is meant by the term 'oxidation'?							escribed lation'?			
									[1]			
		(ii)	Describe magnesi	in terms of um oxide is	electror formed.	i transfer h	ow the	bond in				
									[3]			

10 Aluminium is extracted from aluminium oxide using electrolysis. The Examiner Only Marks Remark apparatus is shown below. anode aluminium oxide in molten cryolite steel tank cathode molten aluminium tapped off (a) What is the meaning of the term 'electrolysis'? _____ [2] (b) Name the electrode at which aluminium is formed. _____ [1] (c) Write an ionic equation for the formation of aluminium. _____ [3] (d) Name a suitable material for the anode and explain why it is used. [2]

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.