Rewarding Learning

General Certificate of Secondary Education 2012-2013

Science: Single Award

Unit 2 (Chemistry)
Foundation Tier
[GSS21]
TUESDAY 13 NOVEMBER 2012
$9.15 \mathrm{am}-10.15 \mathrm{am}$

MARK
 SCHEME

1 (a)

Natural	Synthetic
Silk	Nylon
Cotton	Polythene

Half mark for each correct answer, rounding down.
(b) Any one of:

- Plastic is lighter
- Plastic does not rust
- Plastic lasts longer
- Plastic is cheaper
- Other suitable response. (Accept reverse for metal, e.g. metal is heavier)
- Easier to mould

2 (a)

(b)

[3]

3 (a)

Solution	$\mathbf{p H}$	Colour with universal indicator	Type of solution
Milk of magnesia	8	Blue	Weak alkali
Oven cleaner	13	Purple	Strong Alkali [1]
Lemon juice	5	Yellow [1]	Weak acid

(b) Neutral
(c) (i)
'Corrosion symbol' Correct diagram
(ii) Corrosive
(d) Any one of:

- Easier to see/Greater visual impact
- Internationally understood
- Easier to understand than words
- Can't read

4 (a) 4 points correct
(2/3 points correct [1])
Line of best fit not to 0,0
(b) (i) same amount of fuel.
(ii) the amount of energy released increases.
(iii) $4100-4200 \mathrm{~kJ}$

5 (a) Calcium, Silver, Carbon
(b) 1. Door step and bottle bank collection/deposit [1]
2. Transport to recycling plant
3. Reprocessing of Cullet/crushing of glass/making cullet

6 (a) 38-20\% [1]
18\% [1] (correct answer gets full marks)
if one value from graph is correct and correct subtraction [1]
(b) Year: 2006
Reason: A larger increase in recycling is seen/larger increase in
graph
(a) (i) Magnesium
(ii) Copper
(iii) Any two of:

- Fast/vigorous reaction
- Magnesium dissolves/disappears
- Heat given out/exothermic/temperature rise/gets warmer
- Blue colour of copper sulfate disappears/fades/solution becomes colourless
- Brown/Pink solid/copper metal forms
- Other suitable
(b) Iron [1] + Magnesium sulfate [1] either order Total [2]
(c) (i) CuSO_{4}
(ii) MgCl_{2}

8 (a) Aluminium
(b) Metallic character decreases across the period/changes from metal to non-metal.
(c) Chlorine/Argon.
(d) Sodium
(e) 2.8.4
(f) NaCl

9 (a) A: Nucleus
B: Proton
C: Electron
(b) 2.7 correct number of shells [1] correct electronic arrangement [1]
(c) The number of protons in an element/atom
(d) (i) 40

> (ii) Sodium
(iii) Z/Oxygen [1]
(iv) W/Helium [1]

Flame Test

- Use a Flame test rod/inoculating loop
- Clean the rod by dipping into (concentrated) acid or heating in Bunsen Flame
- Dip the rod into the metal solution and place into Bunsen Flame, (record the colour change)/spray the solution into flame
- Clean the rod and repeat for next solution
- Safety: use goggles and take care with Bunsen Flame

Results

- Sodium - Orange/Yellow Flame
- Potassium - Lilac Flame

Band	Response	Mark
A	Candidates must use appropriate specialist terms throughout to describe the experiment, in a logical sequence and using 6 or 7 of the above Flame test points and must also include a result. They use good spelling, punctuation and grammar and the form and style are of a high standard.	$[5-6]$
B	Candidates must use some appropriate specialist terms throughout to describe the procedure, using $\mathbf{3}$ to 5 of the above points. They use satisfactory spelling, punctuation and grammar and the form and style are of a satisfactory standard.	[3-4]
C	Candidates describe the procedure using only 1 or 2 of the above points however these are not presented in a logical sequence. They use limited spelling, punctuation and grammar and they have made little use of specialist terms.	$[1-2]$
D	Response not worthy of credit.	

Total

