Rewarding Learning

General Certificate of Secondary Education
2011-2012

Science: Single Award (Modular) Road Safety, Radioactivity and Earth in Space Module 6 Higher Tier
 [GSC62]

-

1 (a) The table below gives information about the braking distance at different speeds.

Speed/mph	Braking distance/m
20	6
30	14
40	24
50	38
60	54

(i) Use the information in the table to plot and draw a line graph on the grid below.

[3]
(ii) Describe a trend shown by these results.
\qquad
\qquad
(b) Apart from speed give one other factor that will increase the braking distance. Explain your answer in terms of forces.
\qquad
\qquad
\qquad
(c) The photograph below shows a car which was involved in a collision. The front has collapsed to help reduce injuries.

© TRL Ltd / Science Photo Library

What name is given to the front part of a car which collapses in this way? Suggest how this helps reduce injuries to the driver.
\qquad
\qquad
\qquad

2 The picture below shows the spacecraft Voyager 1 on its journey to the edge of the Solar System and beyond.

© NASA / JPL / Science Photo Library
(a) Explain fully why it is unlikely that this spacecraft will reach any planet outside our Solar System.
\qquad
\qquad
\qquad
(b) Space exploration is very expensive. Suggest two reasons why scientists continue to explore space.
\qquad
\qquad
\qquad
(c) Explain fully the formation of the Sun.
\qquad
\qquad
\qquad
\qquad
\qquad

BLANK PAGE

(Questions continue overleaf)

3 The table below shows the number of deaths caused by road accidents during 2010, in various age groups, in Northern Ireland.

Age	Male	Female
$16-24$	14	1
$25-34$	10	3
$35-44$	4	1
$45-54$	7	3
$55-64$	2	2
$65+$	5	1

(a) State two trends shown by this data.

1. \qquad
\qquad
2. \qquad
\qquad
(b) Police officers often look at the diameter of a person's pupil to detect if they have taken drugs. The images below show the effect of cannabis and ecstasy on pupil diameter.
cannabis ecstasy
(i) Use the chart below to find the diameter of the pupil of a person who has taken cannabis.

Diameter of pupil/mm																
1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0
-	-	\bullet	-	-	-	O	0	0)	-						

\qquad mm [1]
cannabis

(ii) Explain fully why a driver taking drugs may increase the chance of being involved in a car crash.
\qquad
\qquad
\qquad

4 (a) The radioactive source shown below emits alpha, beta and gamma radiation. Detectors placed at A, B and C show that different types of radiation have reached these points from the source.
O

radioactive
source

thin
paper
(i) Complete the table below giving all the type(s) of radiation found at each position (A, B and C).

Position	Type(s) of radiation
A	
B	
C	

(ii) There is no radiation from the source at position D. However, a small amount of radiation is still detected. Why is some radiation still detected at D ?
\qquad
(iii) Explain fully why some atoms are described as radioactive.
\qquad
\qquad
(b) A radioactive material has a half-life of six days.
(i) Explain fully what is meant by the term "half-life".
\qquad
\qquad
(ii) If this radioactive material has a mass of 180 g , what mass of radioactive material will be left after 12 days?

5 The photograph below shows a hydrogen fuelled car.

(a) Describe and explain one environmental and one economic reason why manufacturers are designing cars which run on hydrogen.

Environmental \qquad
\qquad
\qquad
Economic \qquad
\qquad
\qquad
(b) The car above has a mass of 1810 kg and its momentum is $54300 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$.

Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate its velocity.
(Show your working out.)
\qquad

6 Colin investigated the speed of a marble travelling on a track using the apparatus shown below.
(a) The instantaneous speed was measured at each light gate, 0.2 m apart. The results are shown below.

Light gate	Distance from start/m	Time/s	Instantaneous speed/m/s
1	0.2	0.38	0.6
2	0.4	0.60	0.9
3	0.6	0.78	1.3
4	0.8	0.88	2.1

(i) Explain fully, in terms of forces, why the speed of the marble increases as it moves down the track.
\qquad
\qquad
\qquad
\qquad
(ii) Explain fully how the acceleration of the marble between light gate 1 and light gate 4 can be calculated.
\qquad
\qquad
\qquad
\qquad
(iii) Use the equation:

$$
\text { average speed }=\frac{\text { total distance }}{\text { time taken }}
$$

to calculate the average speed of the marble between light gates 2 and 4.
(Show your working out.)
\qquad
(b) Car speed can be measured using instantaneous or average speed cameras. Explain fully why many safety campaigners promote the use of average speed cameras.
\qquad
\qquad
\qquad

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.

