

Centre Number					
71					

Candidate Number

General Certificate of Secondary Education 2010–2011

Science: Single Award (Modular)

Materials and their Management Module 4

Foundation Tier

[GSC41]

TIME

45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all seven** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 45.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. A Data Leaflet, which includes a Periodic Table of the elements, is provided for your use.

For Examiner's use only				
Question Number	Marks			
1				
2				
3				
4				
5				

l Total	
lotai	
Morko	
Marks	

7

BLANK PAGE

(a) Give three reasons why plastic is a suitable material for making garden hoses. Choose from: flexible : conductor : low melting point long lasting : waterproof : insulator 1	Plastic is used to make garden hoses.	Examiner C Marks Re
garden hoses. Choose from: flexible: conductor: low melting point long lasting: waterproof: insulator 1		
garden hoses. Choose from: flexible : conductor : low melting point long lasting : waterproof : insulator 1		
flexible : conductor : low melting point long lasting : waterproof : insulator 1 2 3 [3] (b) Name the raw material used in making plastic. Circle the correct answer. sea water : oil : marble : carbon	garden hoses.	g
long lasting: waterproof: insulator 1 2 3 [3] (b) Name the raw material used in making plastic. Circle the correct answer. sea water: oil: marble: carbon		
1		
2		
3 [3] (b) Name the raw material used in making plastic. Circle the correct answer. sea water : oil : marble : carbon		
Circle the correct answer. sea water : oil : marble : carbon		[3]
Circle the correct answer. sea water : oil : marble : carbon		
sea water : oil : marble : carbon	(b) Name the raw material used in making plastic.	
	Circle the correct answer.	
	sea water : oil : marble : carbon	[1]

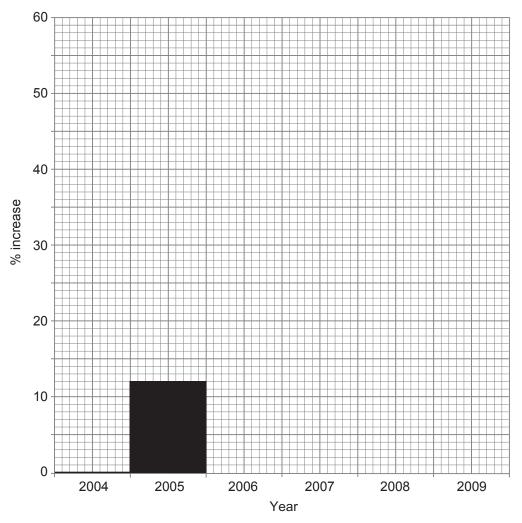
2 (a) Below are **four** methods of crime detection used in forensic science. Using lines, link each method of detection to the evidence of a crime.

Examiner Only

Marks Remark

Method of detection	Evidence of a crime
	Driver over the drink-drive limit
UV light	
	Different dyes in the ink of a forged cheque
Breathalyser	
	Fingerprints on a window at a robbery
Chromatography	
	Fibres at the scene of a robbery
Microscope	
	Forged bank notes

[4]


(b)	A fii	ngerprint was found on the door of a stolen white BMW car. Examiner Marks F	Only Remark
		ensic scientists used the stages below to make a copy of the erprint. The stages are not in the correct order.	
	Α	Use a brush to dust off the excess powder	
	В	Gently lift off the sellotape	
	С	Place some sellotape over the fingerprint	
	D	Gently spread some carbon powder over the fingerprint	
	(i)	Using the letters A,B,C and D, give the correct order.	
		Order [2]	
	(ii)	Why was carbon powder used to obtain the fingerprint from the white BMW car?	
		[1]	

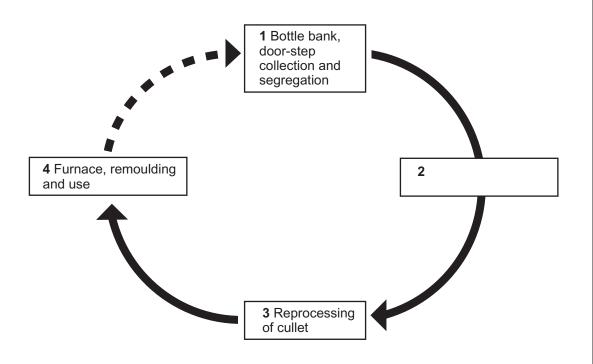
3 The table below shows the yearly percentage increase in the amount of nano-silver produced by a chemical company from 2004 to 2009.

Examiner Only		
Marks	Remark	

Year	% increase in nano-silver produced
2004	0
2005	12
2006	21
2007	34
2008	48
2009	59

(a) (i) Complete bar chart using the information in the table.

[2]


	(ii)	Between which two years was there the greatest percentage increase in the production of nano-silver?		Examine Marks	er Only Remark
		and	[1]		
	(iii)	Give one use of nano-silver.			
			_ [1]		
	(iv)	Complete the following sentence.			
		Nano-silver particles are in size compared to normal silver particles.	[1]		
(b)		photochromic dye in the T-shirt below changes from blue to en in bright sunlight.			
		© Q Gifts Inc.			
	(i)	What type of material is photochromic dye?			
		Choose from:			
		nano : smart : composite	[1]		
			[1]		
	(ii)	Why does the dye in the T-shirt change colour?	[4]		
			[1]		

	copper	cardb	oard :	polythene		
	bricks	: gras	s :	aluminium		
	Biodegra	adable	Non-b	odegradable		
Explain	fully why paper	is describe	ed as a bio	degradable ma	[3] aterial.	
Explain	fully why paper	is describe	ed as a bio	degradable ma	aterial.	
	fully why paper				aterial	
		em that loca	I councils	nave with plasti	aterial. [2] c waste.	
		em that loca	I councils		aterial. [2] c waste.	
		em that loca	I councils	nave with plasti	aterial. [2] c waste.	
		em that loca	I councils	nave with plasti	aterial. [2] c waste.	
		em that loca	I councils	nave with plasti	aterial. [2] c waste.	

6657.05**R** 8

4

5 (a) The following block diagram shows the process for recycling glass.

(i) Explain what happens at stage 2 of the process.

_____[1]

(ii) How is the glass from the bottle banks converted into cullet?

[1]

(iii) Give one reason why it is important to recycle glass.

______[1]

(b) Suggest two reasons why many bottles are now made out of plastic rather than glass.

1. _____

6 The table below gives information about the boiling range of some of the hydrocarbon fractions obtained from crude oil.

Examin	er Only
Marks	Remark

Fraction	Boiling range/°C	Number of carbon atoms in molecules
petrol	20–70	5 to 9
paraffin	120–170	10 to 14
diesel	170–230	15 to 20
tar	above 350	21 to 70

(a)	(i)	Which fraction has molecules with the greatest number of carbo atoms?	on
			[1]
	(ii)	Complete the following sentence to give a trend shown by the information.	
		As the number of carbon atoms in the molecules increases the	
			[1]
	(iii)	Give one use of the paraffin fraction.	
			[1]

(b)	One of the hydrocarbon fuels in the petrol fraction is octane.					
	(i)	Explain fully why octane is a hydrocarbon .		Marks Rema		
			[2]			
	(ii)	Complete the word equation for octane completely burning in oxygen.				
		octane + oxygen → water +	_ [1]			
	(iii)	Give one reason why there is serious worldwide concern about the burning of octane.	ut			
			<u>[</u> 1]			

7 The hardness of four water samples (A, B, C and D) was investigated. Each sample was tested by shaking 25 cm³ with 25 drops of soap solution. The tests were then repeated with samples which had been boiled for two minutes. The results are shown in the table below.

Examiner Only				
Marks	Remark			

Sample	Before boiling	After boiling
А	Lather	Lather
В	No lather	Lather
С	No lather	No lather
D	Lather	Lather

(a)	(i)	Which sample (A, B, C or D) is permanent hard water?	
			[1]
	(ii)	Which sample (A, B, C or D) is temporary hard water?	
			[1]
	(iii)	Which sample (A, B, C or D) would give the greatest problem with kettle scale?	
			[1]
	(iv)	Give one thing that was done to make the above experiment a fair test.	
			[1]

(b)	(i)	Name a chemical compound which is responsible for permane hardness in water.		Examine Marks	r Only Remark
			[1]		
	(ii)	Complete the word equation to show how temporary hardness removed.	is		
Ca	lciun	n hydrogen carbonate → + carbon diox	ide + [2]		
	(iii)	Give one method of removing permanent hardness.			
			[1]		
_	ТНІ	S IS THE END OF THE QUESTION PAPER			

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.