

| Centre Number |       |      |      |  |  |
|---------------|-------|------|------|--|--|
|               |       |      |      |  |  |
| Can           | didat | e Nu | mber |  |  |

General Certificate of Secondary Education 2015–2016

# Double Award Science: Chemistry

Unit C1

**Higher Tier** 

[GSD22]

# THURSDAY 19 MAY 2016, MORNING

#### TIME

1 hour, plus your additional time allowance.

#### INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

You must answer the questions in the spaces provided.

Do not write outside the boxed area on each page or on blank pages.

Complete in blue or black ink only.

Answer **all eight** questions.

#### INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

Quality of written communication will be assessed in Question 4.

A Data Leaflet, which includes a Periodic Table of the elements is provided.

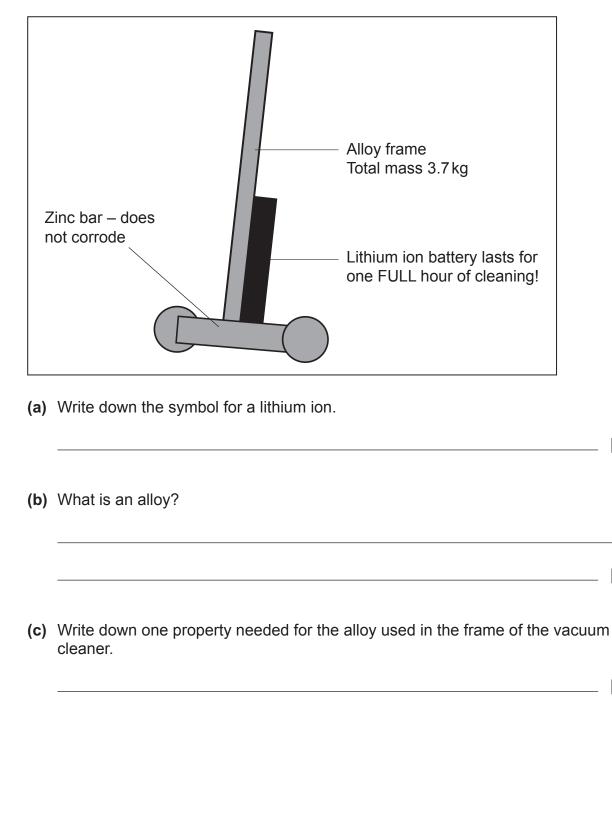
| $\leq$ |  |
|--------|--|
|        |  |

- Resarch 20 J Learning a 20 7 Learning C CC. Ð CC. Ð a Ð C. D Reserver Ð a CC. Ð 20 7 Loaming a Ð a Œ 20 7 Learning a Ð Ð a 20 a Ð a Ð CC. D) CC. D CC. 200 CC. Ð P2
- 1 Newlands and Mendeleev, along with other chemists, helped to produce the modern Periodic Table.
  - (a) Place a tick ( $\checkmark$ ) in each correct box to show the area each chemist worked on.

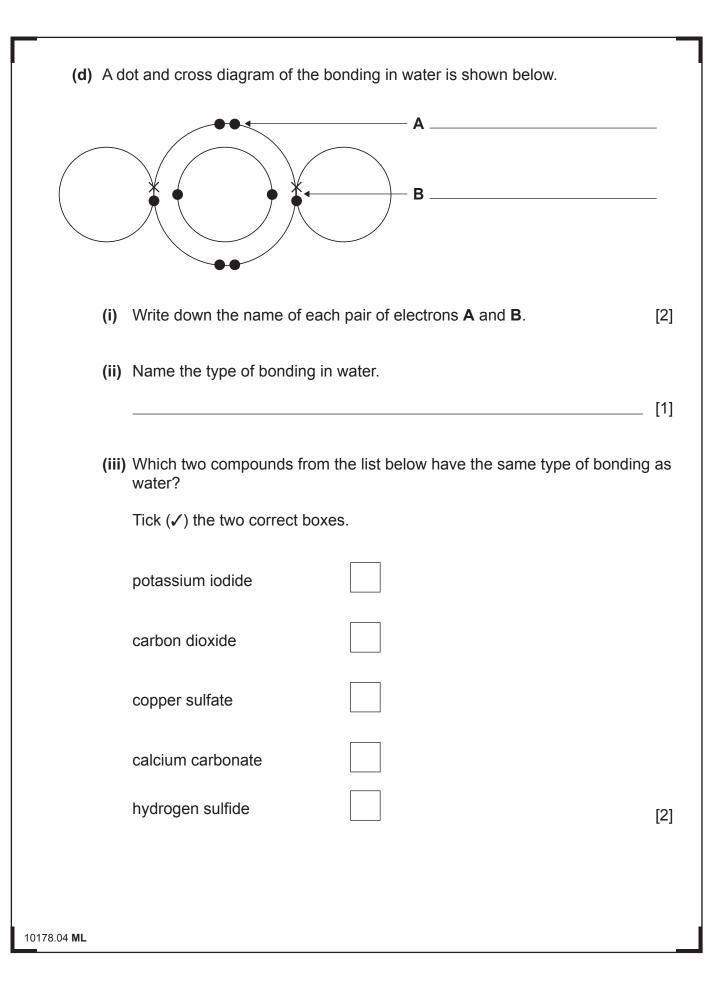
| Area worked on                                     | Newlands<br>only | Mendeleev<br>only | <b>Both</b><br>Newlands<br>and<br>Mendeleev | <b>Neither</b><br>Newlands<br>nor<br>Mendeleev |
|----------------------------------------------------|------------------|-------------------|---------------------------------------------|------------------------------------------------|
| stated the Law of Octaves                          |                  |                   |                                             |                                                |
| arranged elements in order of relative atomic mass |                  |                   |                                             |                                                |
| included noble gases                               |                  |                   |                                             |                                                |
| left gaps for undiscovered elements                |                  |                   |                                             |                                                |

[4]

(b) A student is given a Periodic Table.


| 3         4<br>Be<br>(3941         5<br>50122         6<br>Software         7<br>Software         8<br>Software         5<br>Software         6<br>Software         7<br>Software         8<br>Software         5<br>Software         6<br>Software         7<br>Software         8<br>Software         5<br>Software         6<br>Software         7<br>Software         8<br>Software                 | Column A  |         |     |     |     | Column <b>B</b> |     |     |     |     |        |        |         |           |         |          |                    |                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|-----|-----|-----|-----------------|-----|-----|-----|-----|--------|--------|---------|-----------|---------|----------|--------------------|-----------------------------|
| 3         4<br>Be<br>90122         5<br>B         6<br>C         7<br>N         0<br>O         1599         185           sodium<br>11         nagesium<br>12         10.811         11.407         14.007         15.999         185           sodium<br>11         nagesium<br>12         10.811         11.407         14.007         15.999         185           potasium<br>19         20.902         21.011         12.011         14.007         15.999         185           30.99         44.05         6         7         8         9.974         30.974         32.065         35.46           19         20         21         22         23         24         25         26         29         30         311         32.2         33         3641m         33           30.998         44.956         47.867         50.942         51.996         54.938         58.93         58.93         58.93         65.38         69.23         GGe         Ass.         See         B         52         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55         55                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | Ļ       |     |     |     |                 |     | H   |     |     |        |        | Ļ       |           |         |          |                    | helium<br>2<br>He<br>4.0026 |
| 641         90122         10211         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         12011         1                                                                                                                                                                                                                                                                                                                                                                                   | 3         | 4       |     |     |     |                 |     |     | 1   |     |        |        | 5       |           | 7       | 8        | fluorine<br>9      | 10<br>Ne                    |
| Na         Mg<br>2436         Mg<br>2436         Si         P         Si         P         Si         C           potsatum<br>19         22.990         24.365         scandium         21         121         22         vandium         23         25         26         27         rickel         coppet         zin         23.085         90.974         32.065         35.4           Potsatum<br>19         Cal         Sc         Ti         V         Cr         Mn         Fee         Co         Ni         Cu         Zn         Ga         Ge         As         Selenium         Selenium           30.098         40.078         44.956         47.867         50.942         51.996         54.938         58.693         63.366         65.38         69.723         72.64         74.922         78.56         79.5           rubidium         strontim         strotim         mobbum         mobbum         Cr         Mn         Fee         Co         Ni         Cu         Zn         Ga         Ge         As         Selenium         Si         Selenium         Si         Selenium         Si         Selenium         Si         Selenium         Si         Selenium         Si         Selenium<                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |         | -   |     |     |                 |     |     |     |     |        |        |         |           |         |          | 18.998<br>chlorine | 20.180<br>argon             |
| 22.300         23.30         24.305         26.982         26.982         26.982         26.982         26.982         26.982         26.982         30.74         32.055         35.7           potsculum         calcium         scandium         tituum         22         23         24         25         26         27         28         29         30         31         germanium         screnium         binum         33         34         33         34         33         34         33         34         33         34         33         34         33         34         33         34         33         34         33         34         33         34         35         36         65.38         65.23         72.64         74.82         78.96         79.7         78.8         65.38         65.34         18.91er         cadmum         10.01um         10.01um </th <th></th> <th>17</th> <th>18</th>                                                                                                                                                                                                         |           |         |     |     |     |                 |     |     |     |     |        |        |         |           |         |          | 17                 | 18                          |
| potasulum<br>19         calcium<br>20         scandium<br>21         scandium<br>22         standium<br>23         titanium<br>24         vanadum<br>24         the scandium<br>24         titanium<br>26         vanadum<br>26         titanium<br>26         vanadum<br>27         titanium<br>28         vanadum<br>29         down<br>31         gemanium<br>32         gemanium<br>33         gemanium<br>34         selenium<br>34         selenium<br>33         selenium<br>34         seleliuium<br>34         seleliuium<br>34 |           |         |     |     |     |                 |     |     |     |     |        |        |         |           |         |          | 35.453             | Ar<br>39.948                |
| K         Ca<br>40.078         Sc<br>44.956         Ti<br>47.867         V         Cr<br>51.966         Mn<br>54.98         Fe<br>58.45         Co<br>88.93         Ni<br>88.93         Cu<br>6.3.46         Zn<br>6.3.46         Ga<br>65.28         Ga<br>69.723         Ga<br>72.64         Ga<br>74.922         Ga<br>74.922         Se<br>78.98         Se<br>78.98         Se<br>78.98         Se<br>88.93         Se<br>88.933         Se<br>8.8493         Se<br>6.3.46         Ga<br>6.5.28         <                                     | potassium | calcium |     |     |     |                 |     |     |     |     |        |        | gallium | germanium | arsenic | selenium | bromine<br>35      | krypton<br>36               |
| 30.098         40.078         44.956         47.867         50.942         51.996         54.93         55.845         58.93         63.546         65.38         69.723         72.64         74.922         78.96         79.55           rubidium<br>37         38         39         40         41         42         44         45         46         47         48         49         50         51         52         55           Rb         Sr         Y         Zr         Nbb         Mo         TC         Ru         Rh         Pd         Ag         Ad         45         47         48         49         50         51         52         55         51         52         51         52         51         52         51         52         55         55         57         72         73         74         76         77         78         79         80         81         18.24         101.07         102.91         106.42         107.87         114.42         114.42         114.71         121.76         127.60         126           caceium         barium         Iantharum         hafring         Taa         Tag         Rg         Rg         76                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         | -   |     |     |                 |     | _   |     |     |        |        | -       | -         | _       | -        | Br                 | Kr                          |
| 37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         52           Rb         Sr         Y         Zr         Nb         Mo         Tc         Ru         Rh         Pd         Ag         Cd         In         Sn         Sn         Sb         Te         I           85.68         87.62         88.906         91.224         92.006         95.96         [98]         101.07         102.91         106.42         107.87         114.82         118.71         127.60         127.60         127.60         127.60         127.60         127.60         126         126         106.42         107.87         114.82         118.71         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         127.60         12                                                                                                                                                                                                                                                                                                                                                                                                                              |           |         | 1   | 1   | -   | _               |     | _   |     |     |        |        |         |           | -       |          | 79.904             | 83.798                      |
| Rb         Sr         Y         Zr         Nb         Mo         Tc         Ru         Rh         Pd         Ag         Cd         In         Sn         Sb         Te         I           263         82.62         88.966         91.224         92.966         95.96         10.07         10.07         102.91         106.42         107.87         112.41         114.82         118.71         127.66         127.60         126           casim         barium         lanthanum         hafnium         tungten         rhenium         orginium         ridium         platium         god         mercury         Hallium         last         83         84         83           CS         Ba         La         Hf         Ta         W         Re         OS         Ir         Pt         Au         Hg         TI         Pb         Bi         Po         A           132.91         137.33         138.91         178.49         180.95         183.44         186.21         190.23         192.22         195.08         196.97         204.38         207.2         208.98         209         21           fracture         adubuinum         statium         interritum                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |     |     |     |                 |     |     |     |     |        |        |         |           |         |          | iodine<br>53       | xenon<br>54                 |
| 85.68         87.62         88.096         91.224         92.906         95.96         [98]         101.07         102.91         106.42         107.87         112.41         114.82         118.71         127.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         122.60         123.61         116.82         116.82         188.4         84         83         84         84         83         84         83         84         84         85         123.61         112.61         116.92         116.92         116.92         116.92         124.21         116.82         126.92         126.92         126.92         126.92         126.92         126.9                                                                                                                                                                                                                                                                                                                                                                 |           |         |     |     |     |                 |     | _   |     | -   | _      |        | -       |           |         |          | Ĩ                  | Xe                          |
| 55         56         57         72         73         74         75         76         77         78         79         80         81         82         83         84         83           132         137.33         138.91         178.49         180.95         182.49         186.21         190.23         192.22         196.97         196.97         200.59         201.29         204.38         207.2         208.98         209         21           francium         actinium         rutherfordium         dubnum         seaborgium         bohrium         hassium         methermenum         damstadium         ropentium         copentium         copentium         copentium         copentium         copentium         topentium         topentium <thtopentium< th="">         topentium         <thtopentium< t<="" td=""><td></td><td></td><td></td><td>1</td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td>107.87</td><td></td><td></td><td></td><td></td><td></td><td>126.90</td><td>131.29</td></thtopentium<></thtopentium<>                                                                                                     |           |         |     | 1   | 1   | -               |     |     |     |     | 107.87 |        |         |           |         |          | 126.90             | 131.29                      |
| Cs         Ba         La         Hf         Ta         W         Re         Os         Ir         Pt         Au         Hg         Ta         Pb         Bi         Po         A           132.91         132.91         178.49         178.49         183.84         186.21         190.23         192.22         195.68         196.37         204.38         207.2         208.98         209         21           Trancin         radum         actinium         rutherGradum         Obtrium         basium         memerium         damsstadium         compression         coperticium         204.38         207.2         208.98         209         21           87         88         89         1040-10         105         106         109         110         111         111         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |         |     |     |     |                 |     |     |     |     |        |        |         |           |         |          | astatine<br>85     | radon<br>86                 |
| 132.21         137.33         138.91         178.49         180.95         183.84         186.21         190.23         192.22         195.86         196.97         200.59         204.38         207.2         208.98         209         21           francium         radium         actinium         ruterfordium         dubnium         seaborgium         hobrium         hassim         mettnerium         damstatilum         roergenium         copernicium         204.38         207.2         208.98         209         21           87         88         89         104         105         106         107         108         109         110         111         112         112         111         112         112         111         112         111         112         112         113         114         114         115         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114         114 <td< td=""><td>-</td><td>_</td><td></td><td></td><td>_</td><td></td><td>_</td><td>_</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>At</td><td>Rn</td></td<>                                                                                                                                                                                                                                        | -         | _       |     |     | _   |                 | _   | _   | -   |     |        |        |         |           |         |          | At                 | Rn                          |
| 87 88 89 104 105 106 107 108 109 110 111 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |         | -   | 1   | -   |                 |     |     | 1   |     |        | 200.59 | 1       |           | 1       |          | 210                | 222                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         |     |     |     |                 |     |     |     |     |        |        |         |           |         |          |                    | 1                           |
| Fr   Ka   AC   Ki   DD   39   DN   IIS   MIL   DS   KG   CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |         | -   |     |     |                 |     |     |     |     |        | -      |         |           |         |          |                    |                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           |         | 1   | 1   | 1   |                 |     |     | 1   |     |        |        |         |           |         |          |                    |                             |
| 223         226         227         261         262         266         264         277         268         271         272         285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 223       | 226     | 227 | 261 | 262 | 266             | 264 | 277 | 268 | 271 | 272    | 285    |         |           |         |          |                    |                             |

| C                  | ircle the correc                                   | ct answer in        | each of the five q    | uestions below.                         |          |
|--------------------|----------------------------------------------------|---------------------|-----------------------|-----------------------------------------|----------|
| (i                 | ) The elemen                                       | its in <b>Colum</b> | n A are:              |                                         |          |
|                    | alkali m                                           | etals               | Group 2               | Period 2                                | [1]      |
| (i                 | i) The physica                                     | al state at ro      | om temperature o      | f all the elements in <b>Column B</b> i | S:       |
|                    |                                                    | solid               | liquid                | gas                                     | [1]      |
| (i                 | ii) The elemen                                     | its N, O, F, C      | CI, Br and I are all: | :                                       |          |
|                    | ga                                                 | ses                 | diatomic              | inert                                   | [1]      |
| (i                 | v) The elemen                                      | its in <b>Colum</b> | <b>n B</b> all have:  |                                         |          |
| only 3             | electrons                                          | 3 electro           | ons in outer shell    | 3 electrons in first shell              | [1]      |
| (\                 | <ul><li><i>i</i>) The solid bl</li></ul>           | ack line sep        | arates:               |                                         |          |
| metals             | and gases                                          | sol                 | lids and liquids      | metals and non-metals                   | s<br>[1] |
| (c) (i             | ) Name the e                                       | lement whic         | h is in Period 2 ar   | nd Group 4.                             |          |
|                    |                                                    |                     |                       |                                         | [1]      |
| (i                 | <ul> <li>i) Name an el<br/>outer shell.</li> </ul> | ement whos          | e atoms have thre     | ee shells and five electrons in the     | е        |
|                    |                                                    |                     |                       |                                         | [1]      |
| 10178 04 MI        |                                                    |                     |                       | [Turi                                   | n over   |
| 10178.04 <b>ML</b> |                                                    |                     |                       |                                         |          |


Reased 200 J Learning a 20 7 Learning a Ð a Ð a Ð œ Ð a Ð Q Ð a Ð a Ð 20 7 Loaming CC. \_ [1] Ð a Œ 20 7 Learning a [2] Ð Ð a \_ [1] 20 a Ð a Ð a Ð D CC. CC. Ð

P2

**2** A labelled diagram for a cordless vacuum cleaner, is shown below.



|        |      |             |                                                                                                                            | -    |
|--------|------|-------------|----------------------------------------------------------------------------------------------------------------------------|------|
| 3      | Wa   | ter ha      | as a melting point of 0 °C and it is a very good solvent.                                                                  |      |
|        | (a)  | Wha         | at is meant by the chemical terms:                                                                                         |      |
|        |      | (i)         | solvent?                                                                                                                   |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            | [1]  |
|        |      | (;;)        | molting point?                                                                                                             |      |
|        |      | (11)        | melting point?                                                                                                             |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            | [4]  |
|        | (b)  |             | e down two other physical properties of water. Do not include that it has a ting point of 0 °C and is a very good solvent. | l    |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        | Cor  | προι        | Ind A is soluble in water. It has a solubility of 2.9g/100g of water at 20°C.                                              |      |
|        | (c)  | Why<br>wate | y is the temperature important when giving the solubility of a substance in<br>er?                                         |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            | [1]  |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        |      |             |                                                                                                                            |      |
|        |      |             | ſŤur                                                                                                                       | n ov |
| )178.0 | 4 ML |             | [                                                                                                                          |      |



20 J Loaming a Ð a Ð Œ Ð a Ð œ Ð G Ð Q Ð a CC. 20 D a Ð a Ð Œ D) a Ð a Ð a Ð Œ Ð a Ð a Ð D Œ a Ð

P2

Reason

# 4 In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Magnesium forms a  $2^+$  ion and oxygen forms a  $2^-$  ion. Compare and contrast the  $Mg^{2+}$  ion and the  $O^{2-}$  ion.

You should include information about:

- the number and type of the particles present in each ion
- the electron configuration of each ion and
- how the ions are formed from their atoms.

10178.04 **ML** 

\_\_\_\_\_ [6]

[Turn over

|     | tal oxides and metal carbonates will react with acids to form salts.                                                                                                           |              |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (a) | Complete the word equation for the reaction between copper oxide and sulfuric acid.                                                                                            |              |
|     | copper oxide $+$ sulfuric acid $\rightarrow$ $+$                                                                                                                               | [2]          |
| (b) | Balance the symbol equation below.                                                                                                                                             |              |
|     | $HCI + CuO \rightarrow CuCl_2 + H_2O$                                                                                                                                          | [1]          |
| (c) | Write a balanced symbol equation for the reaction between copper carbo<br>and hydrochloric acid.                                                                               | onate<br>[3] |
| (d) | The reaction between adjum budravide and budraphlaria acid is known                                                                                                            |              |
| (u) | The reaction between sodium hydroxide and hydrochloric acid is known neutralisation reaction. Write an <b>ionic</b> equation to describe this neutralis Include state symbols. | ation.       |
| (u) | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    |              |
| (4) | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    | ation.       |
| (4) | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    | ation.       |
|     | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    | ation.       |
|     | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    | ation.       |
|     | neutralisation reaction. Write an ionic equation to describe this neutralis                                                                                                    | ation.       |

- Learning
- **6** Air is a mixture of gases including nitrogen,  $N_2$ , and very small amounts of methane,  $CH_4$ .

Draw **dot and cross** diagrams to show the bonding in a molecule of methane and a molecule of nitrogen. **Show the outer electrons only.** 

methane

nitrogen

[3]

[2]

[Turn over

10178.04 **ML** 

30

- Reason a Ð Œ Ð Œ Ð Œ Ð Œ Ð a Ð a Ð a Ð G Ð Œ Ð Œ Ð a Ð Œ Ð Œ Ð Œ Ð Œ Ð Œ Ð a Ð Œ Ð a Ð Œ Ð Œ Ð
- 7 (a) The table below gives information about the physical properties of the halogens. Complete the table.

| Name     | Formula | State at room temperature | Colour     |
|----------|---------|---------------------------|------------|
| bromine  |         |                           | red-brown  |
| chlorine |         | gas                       |            |
| fluorine |         | gas                       | yellow     |
| iodine   |         |                           | grey-black |

[5]

(b) The sentence below describes the trend in melting points of the halogens as Group 7 is descended. Complete the sentence.

| The melting points of halogens _ | as Group 7 is |
|----------------------------------|---------------|
| descended.                       | [1]           |

(c) Explain why the halogens all form ions with a single negative charge.

\_ [2]

- (d) When chlorine is bubbled through a solution of sodium iodide the colour of the solution darkens.
  - (i) Write a balanced symbol equation for the reaction of chlorine with sodium iodide.

[3]

[2]

C.

(ii) Explain why the colour of the solution darkens in this reaction.

# **BLANK PAGE**

## DO NOT WRITE ON THIS PAGE

(Questions continue overleaf)

10178.04 **ML** 

[Turn over

| (a) | Wh   | at name is given to this process?                                                                                                         |    |
|-----|------|-------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |      |                                                                                                                                           | [  |
| (b) | Exp  | plain why molten calcium fluoride can conduct electricity.                                                                                |    |
|     |      |                                                                                                                                           | [2 |
| (c) | Wh   | at happens to the molten calcium fluoride as the electricity passes through                                                               | ו? |
|     |      |                                                                                                                                           | [′ |
| Cal | cium | n is produced at the cathode.                                                                                                             |    |
| (d) | (i)  | Why is calcium produced at the <b>cathode</b> ?                                                                                           |    |
|     |      |                                                                                                                                           | [2 |
|     | (ii) | Explain, <b>in words</b> , in terms of the electrons involved, <b>how</b> the calcium is produced at the cathode during the electrolysis. |    |
|     |      |                                                                                                                                           |    |
|     |      |                                                                                                                                           | [; |
|     |      |                                                                                                                                           |    |
|     |      |                                                                                                                                           |    |

- (e) Graphite is a suitable material for the electrodes as it is a good conductor of electricity.

Write down two other properties of graphite which make it suitable for use as electrodes.

1. \_\_\_\_\_ 2.\_\_\_\_\_

#### [2]

# THIS IS THE END OF THE QUESTION PAPER

10178.04 **ML** 

2

# **BLANK PAGE**

# DO NOT WRITE ON THIS PAGE

10178.04 **ML** 

Reservin

# **BLANK PAGE**

## DO NOT WRITE ON THIS PAGE

# DO NOT WRITE ON THIS PAGE

| For Exa<br>use     |       |
|--------------------|-------|
| Question<br>Number | Marks |
| 1                  |       |
| 2                  |       |
| 3                  |       |
| 4                  |       |
| 5                  |       |
| 6                  |       |
| 7                  |       |
| 8                  |       |
| Total<br>Marks     |       |
|                    |       |

Examiner Number

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.