

	Centre Number				
Candidate Numbe					
	Ca	ndida	te Nu	mber	
	Са	ndida	te Nu	mber	

General Certificate of Secondary Education 2014–2015

Double Award Science: Chemistry

Unit C1
Higher Tier

[GSD22] WEDNESDAY 25 FEBRUARY 2015, MORNING

TIME

1 hour, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question 3. A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
8			

Total	
Marks	

BLANK PAGE

1 This question is about atomic structure.

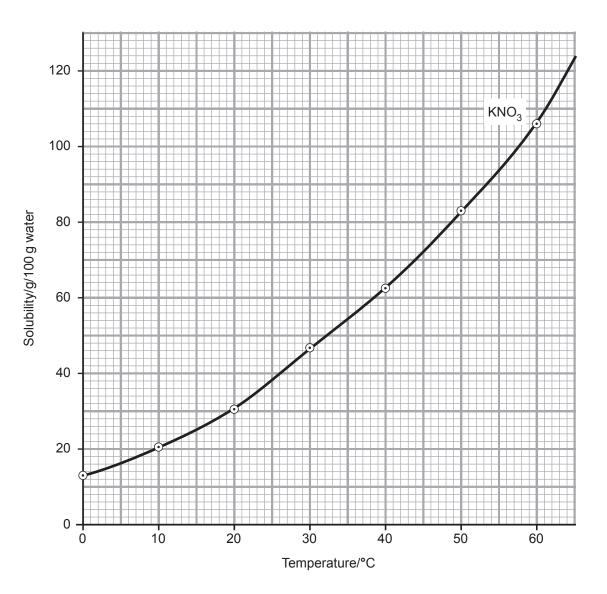
Examiner Only

Marks Remark

(a) Use your knowledge of atomic structure to complete the table below.

Atom/ion	Mass number	Number of protons	Number of electrons	Number of neutrons
А		3	3	3
В	27	13	13	
С	11		5	6
D		11	10	12
E		17	18	18

[5]

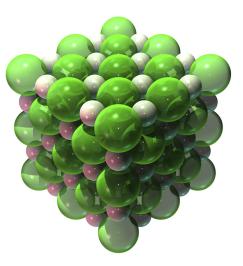

(b) Give the chemical symbol for each of the particles A, D and E. They may be atoms or ions.

	Symbol
А	
D	
Е	

[3]

2 The graph below shows the solubility curve for potassium nitrate, KNO₃.

(a) Use the data given in the table below to plot a solubility curve for potassium chloride, KCl, on the same grid as the solubility curve for potassium nitrate.


Temperature/°C	0	10	20	30	40	50	60
Solubility of potassium chloride/g/100 g water	28	31	33	36	39	42	45

[3]

(b)		scribe and compare the trends in solubility for potassium nitrate dipotassium chloride.	Examiner Only Marks Remark
		[2]	
(c)	At v	what temperature do both salts have the same solubility? [1]	
(d)	(i)	What is the solubility of potassium nitrate in 100 g of water at 43 °C?	
	(ii)	Calculate the difference in solubility between potassium nitrate and potassium chloride in 100 g of water at 43 °C. Show your working out.	
(e)		[2] Iculate the amount that would crystallise out if a saturated solution	
		ootassium nitrate in 100 g of water was cooled from 56 °C to 25 °C.	
		[3]	

3 Sodium chloride has an ionic crystal lattice structure like that shown in the diagram below.

Examiner Only			
Marks	Remark		

© Russell Kightley / Science Photo Library

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Predict and explain the physical properties you would expect sodium chloride to have.			
[6			

6

4 The table below gives information about the salts formed when metal carbonates react with acids.

Examiner Only			
Marks	Remark		

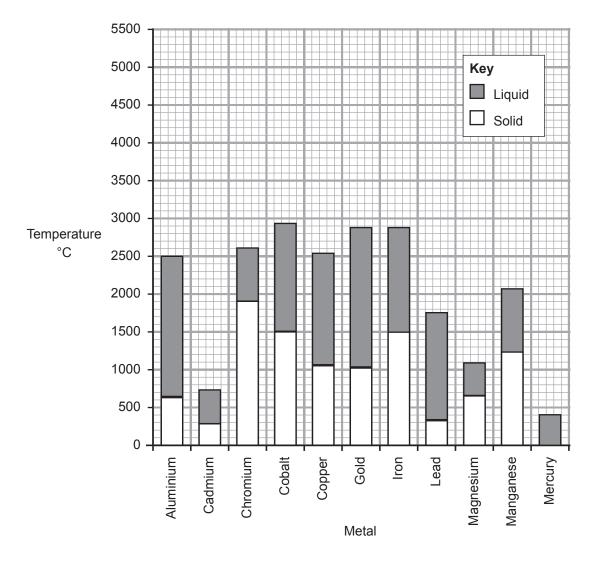
Metal carbonate	Acid used	Cation in salt	Anion in salt	Formula of salt produced
calcium	hydrochloric	Ca ²⁺		CaCl ₂
sodium		Na ⁺	SO ₄ ²⁻	
	sulfuric	Cu ²⁺		CuSO ₄
magnesium	nitric			Mg(NO ₃) ₂

(a)) Comp	lete	the	table
-----	--------	------	-----	-------

[4]

(b)	One of the reactions shown in the table involves a colour change.
	Give the colours of the starting metal carbonate and the salt solution
	produced:

(c) All of the reactions shown in the table produce the same gas. Name this gas and describe a test that is used to identify it.


Name: ______
Test: _____

[3]

5	(a)	What is	meant by	the term	melting	noint?
J	(a)	vviiatis	IIIcanii by	tile telli	mennig	politi

Melting point is:		
0.		
		[1]

(b) The data shown below gives information about the melting and boiling points of some metals.

(i)	Which	metal,	in the	table,	has t	he I	owest	boiling	point?
-----	-------	--------	--------	--------	-------	------	-------	---------	--------

(ii) Which metal, in the table, has the highest melting point?

[1]

(iii) From the data in the table, in what way are gold and aluminium very similar?

			F41
			111

8

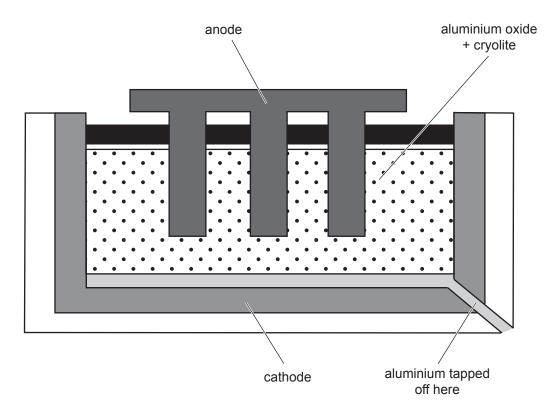
I	Ductility	Malleability	Most malleable
	gold	gold	
	iron	aluminium	
	copper	copper	
	aluminium	tin	
	zinc	lead	
ļ	tin	zinc	\
ast ctile	lead	iron	Least malleable
			[.
	terms of their electr s allows them to be		ns, how the structur d ductile.

6	(a)	Wh	at do you understand by the term covalent bond ?	Examin Marks	er Only Remark
			[1]		
	(b)	(i)	Draw a dot and cross diagram to show the bonding in a molecule of carbon dioxide, CO_2 . Show outer electrons only.		
		(ii)	[3] Draw a dot and cross diagram to show the bonding in a molecule		
			of ammonia, NH ₃ . Show outer electrons only.		
			[2]		
		(iii)	On your diagram of the molecule of ammonia above label a lone pair of electrons. [1]		

7 The table below gives information about four members of the halogens.

Examin	er Only
Marks	Remark

element	ion	physical state at room temperature	colour	formula of molecule	toxicity
fluorine	F-	gas	yellow	F ₂	high
chlorine	CI-	gas	green	Cl ₂	high
bromine	Br-	liquid	reddish -brown	Br ₂	high
iodine	I-	solid	grey-black	l ₂	high


(a)	Describe the trends in colour and the physical state at room temperature as you move down the group of halogens.							
			[2]					
(b)	Exp	plain why all the halogens form ions with a charge of minus one.						
			[2]					
(c)	Ast	atine, At, is the fifth member of the halogens.						
	(i)	Using the data given predict the following properties of astatine						
		Physical state at room temperature:	_					
		Colour:						
		Toxicity:						
		Formula of ion:						
		Formula of molecule:	[2]					
	(ii)	What would you predict to be the name of the compound forme when sodium reacts with astatine?	d					

_ [1]

8 The diagram below shows how aluminium is extracted from its ore.

Examiner Only

Marks Remark

(a)	What is the name of the aluminium ore used in this extraction
	process?

_____[1]

- (b) Write a half equation to show what happens at the cathode.

 [2]
- (c) Explain why the anodes need to be replaced periodically during this process.

_____[3

Give two ways	process of aluminium is very expensive. s in which cryolite helps reduce costs.	Examiner Marks R
·		
State two factor	ors which should be taken into account when siting action plant.	an
THIS IS THI	E END OF THE QUESTION PAPER	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.