

| Ce   | ntre Number   |
|------|---------------|
| 71   |               |
| Cano | didate Number |

# General Certificate of Secondary Education 2014

## **Double Award Science: Chemistry**

Unit C2

**Higher Tier** 

[GSD52]

#### **TUESDAY 10 JUNE 2014, AFTERNOON**



#### TIME

1 hour 15 minutes.

#### **INSTRUCTIONS TO CANDIDATES**

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all eight** questions.

### **INFORMATION FOR CANDIDATES**

The total mark for this paper is 90.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Questions 1(a) and 8(a).

A Data Leaflet, which includes a Periodic Table of the Elements, is included in this question paper.

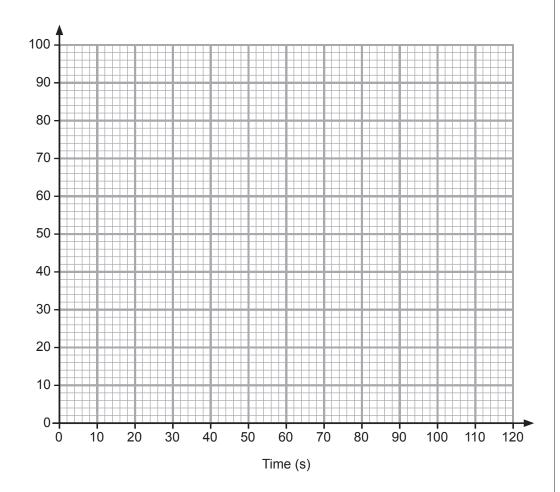
| For Examiner's use only |       |  |  |
|-------------------------|-------|--|--|
| Question<br>Number      | Marks |  |  |
| 1                       |       |  |  |
| 2                       |       |  |  |
| 3                       |       |  |  |
| 4                       |       |  |  |
| 5                       |       |  |  |
| 6                       |       |  |  |
| 7                       |       |  |  |
| 8                       |       |  |  |

| Total |  |
|-------|--|
| Marks |  |

| (a) | The reaction between dilute hydrochloric acid and marble chips is given in the equation below:                                                                                       |     | Examiner Only  Marks Remark |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|
|     | $CaCO_{3(s)} + 2HCI_{(aq)} \to CaCI_{2(aq)} +  CO_{2(g)} +  H_2O_{(I)}$                                                                                                              |     |                             |
|     | Plan a method to measure the rate of reaction between dilute hydrochloric acid and marble chips.                                                                                     |     |                             |
|     | You should give clear details of how you would carry out your investigation, including a description of what results you will need t record. Explain how you would use your results. | 0   |                             |
|     | You will be assessed on your written communication skills including the use of specialist scientific terms.                                                                          |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      | [6] |                             |
| (b) | Use the idea of collisions to explain the effect of increasing the concentration of the hydrochloric acid on the rate of reaction.                                                   |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      |     |                             |
|     |                                                                                                                                                                                      | [3] |                             |

(c) Magnesium ribbon reacts with dilute hydrochloric acid to produce hydrogen gas. A student measured the volume of gas produced over a period of time. The results are shown in the table below.

| Examiner Only |        |  |  |  |
|---------------|--------|--|--|--|
| Marks         | Remark |  |  |  |


| Volume of H <sub>2</sub> gas (cm <sup>3</sup> ) | 0 | 23 | 40 | 58 | 71 | 75 | 78 | 80 | 80  |
|-------------------------------------------------|---|----|----|----|----|----|----|----|-----|
| Time (s)                                        | 0 | 10 | 20 | 40 | 60 | 70 | 80 | 90 | 100 |

(i) Label the y-axis on the grid below.

[1]

(ii) Use the grid to plot a curve showing the results of the experiment.

[3]



(iii) At what time did the reaction stop?

\_\_\_\_\_[1]

(iv) From your graph, how long did it take for 50 cm<sup>3</sup> of hydrogen to be formed?

\_\_\_\_\_\_[1]

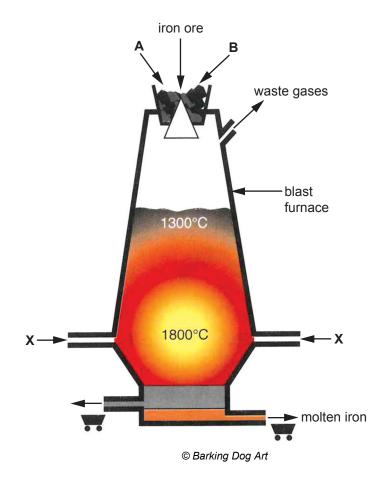
| 2 | (a) | Calculate the relative formula mass of each of the following substances.                                                                                           | Examiner Only Marks Remark |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|   |     | (Relative atomic masses: H=1, N=14, O=16, Na=23, S=32, Ca=40)                                                                                                      |                            |
|   |     | (i) sodium nitrate NaNO <sub>3</sub>                                                                                                                               |                            |
|   |     | [1]                                                                                                                                                                |                            |
|   |     | (ii) sulfuric acid H <sub>2</sub> SO <sub>4</sub>                                                                                                                  |                            |
|   |     | [1]                                                                                                                                                                |                            |
|   |     | (iii) calcium hydroxide Ca(OH) <sub>2</sub>                                                                                                                        |                            |
|   |     | [1]                                                                                                                                                                |                            |
|   | (b) | ) What is meant by one mole of a substance?                                                                                                                        |                            |
|   |     |                                                                                                                                                                    |                            |
|   |     | [2]                                                                                                                                                                |                            |
|   | (c) | This part of the question is about the amount of iron that can be produced from a certain amount of iron(III) oxide. The equation for the reaction is given below: |                            |
|   |     | $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$                                                                                                                            |                            |
|   |     | The relative formula mass of Fe <sub>2</sub> O <sub>3</sub> is 160.                                                                                                |                            |
|   |     | (i) How many moles of Fe <sub>2</sub> O <sub>3</sub> are in 80 g of the substance?                                                                                 |                            |
|   |     |                                                                                                                                                                    |                            |
|   |     |                                                                                                                                                                    |                            |
|   |     | Answer moles [1]                                                                                                                                                   |                            |
|   |     | (ii) How many moles of iron could be produced from 80 g of Fe <sub>2</sub> O <sub>3</sub> ?                                                                        |                            |
|   |     |                                                                                                                                                                    |                            |
|   |     | Apouer males [4]                                                                                                                                                   |                            |
|   |     | Answer moles [1]                                                                                                                                                   |                            |

|     | (111) | 80 g of Fe <sub>2</sub> O <sub>3</sub> . You may find your Data answering this question.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                              | Marks Rema |  |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------|--|
|     | (iv)  | Calculate the maximum mass of iron 8 tonnes of Fe <sub>2</sub> O <sub>3</sub> . (1 tonne = $1000 \text{ kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                |            |  |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tonnes                         | [1]        |  |
| (d) | the   | e final part of this question is about the concentration of a solution and the nuttion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                |            |  |
|     | (i)   | If 800 cm³ of water is added to 200 cm hydrochloric acid, to make a 1 dm³ so <b>concentration</b> of the acid? Tick (✓) the state of the st | lution, what happens to th     |            |  |
|     |       | It stays the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |            |  |
|     |       | It becomes 0.25 mol/dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                |            |  |
|     |       | It becomes 0.20 mol/dm <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                | [1]        |  |
|     | (ii)  | If 800 cm <sup>3</sup> of water is added to 200 cm hydrochloric acid, what happens to th in the solution? Tick (✓) the correct ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e <b>number of moles</b> of ac |            |  |
|     |       | It stays the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |            |  |
|     |       | It becomes 25% of its original value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |            |  |
|     |       | It becomes 20% of its original value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | [1]        |  |

| 3 | (a) |       | s part of the qu<br>conate.                 | estion is abo  | ut the hea   | ting of soli | id calcium    |     | Examin<br>Marks | er Only<br>Remark |
|---|-----|-------|---------------------------------------------|----------------|--------------|--------------|---------------|-----|-----------------|-------------------|
|   |     | (i)   | Complete the                                | word equatio   | n for this r | eaction.     |               |     |                 |                   |
|   |     |       | calcium<br>carbonate                        | heat<br>→      |              | +            |               | [2] |                 |                   |
|   |     | (ii)  | The reaction in Which one of reaction? Tick | the following  | statement    | s describe   |               | _   |                 |                   |
|   |     |       | Gives out hea                               | t energy to th | ie surroun   | dings        |               |     |                 |                   |
|   |     |       | Takes in heat                               | energy from    | the surrou   | ndings       |               |     |                 |                   |
|   |     |       | No change in                                | energy durino  | g reaction   |              |               | [1] |                 |                   |
|   |     | (iii) | Circle the term which occurs                |                |              |              |               | ion |                 |                   |
|   | the | rma   | l cracking                                  | displa         | acement      |              | neutralisatio | on  |                 |                   |
|   |     |       | thermal deco                                | mposition      | ı            | photosyn     | thesis        | [1] |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |
|   |     |       |                                             |                |              |              |               |     |                 |                   |

| (b) | Methane burns in oxygen. The reaction is described by the equation below:                                           | 1   | Examiner Only Marks Remar |
|-----|---------------------------------------------------------------------------------------------------------------------|-----|---------------------------|
|     | $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$                                                                              |     |                           |
|     | Explain, in terms of the bonds that are broken and made in this reaction, why the burning of methane is exothermic. |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     | [5] |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |
|     |                                                                                                                     |     |                           |

| a) | ıen  | iporary hard water is found in limestone regions.                                                                                                                                            | Examiner  Marks R |
|----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|    | (i)  | Name the compound that causes temporary hardness in water                                                                                                                                    |                   |
|    | (ii) | Explain how water in limestone regions becomes hard.                                                                                                                                         |                   |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |
| ı  | Ехр  | d water can be softened by addition of washing soda Na <sub>2</sub> CO <sub>3</sub> .  slain, in terms of the ions involved, why the addition of washing a can be used to soften hard water. |                   |
| -  |      |                                                                                                                                                                                              |                   |
| -  |      |                                                                                                                                                                                              |                   |
| -  |      |                                                                                                                                                                                              | [3]               |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |
|    |      |                                                                                                                                                                                              |                   |


| 5 | (a) | volc<br>atm<br>diox<br>amr | ing the first billion years of the Earth's existence, there was intercanic activity which released gases that formed the early osphere. The early atmosphere contained over 90% carbon kide, 5% nitrogen, 3% sulfur dioxide and traces of hydrogen sulfimonia and methane, but no oxygen. It was hot, smelly and dead sonous. | Marks Rer | nly<br>nark |
|---|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
|   |     | (i)                        | What is the <b>difference</b> in percentage composition of nitrogen g found in the atmosphere today compared to its composition in t early atmosphere?                                                                                                                                                                        |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               | [1]       |             |
|   |     | (ii)                       | One theory suggests that the early atmosphere changed as living organisms evolved. State two ways that the carbon dioxide could have been removed from the early atmosphere.                                                                                                                                                  |           |             |
|   |     |                            | 1                                                                                                                                                                                                                                                                                                                             |           |             |
|   |     |                            | 2                                                                                                                                                                                                                                                                                                                             | [2]       |             |
|   | (b) |                            | s part is about the Group 2 metal strontium and some of its apounds.                                                                                                                                                                                                                                                          |           |             |
|   |     | •                          | You may find your understanding of the properties of magnesiu and calcium and their compounds to be helpful. You may find your Data Leaflet useful.                                                                                                                                                                           | m         |             |
|   |     | (i)                        | What is the formula of strontium sulfate?                                                                                                                                                                                                                                                                                     |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               | [1]       |             |
|   |     | (ii)                       | What would you expect to happen if some strontium carbonate was placed in a beaker of water?                                                                                                                                                                                                                                  |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               | [1]       |             |
|   |     | (iii)                      | What would you expect to observe if a small piece of strontium metal was placed in a beaker of water?                                                                                                                                                                                                                         |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               |           |             |
|   |     |                            |                                                                                                                                                                                                                                                                                                                               | [3]       |             |

| 6 | (a) |       | s part of the question is about the physical properties and uses or<br>ogen gas.                                      | of  | Examiner Only  Marks Remark |
|---|-----|-------|-----------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|
|   |     | (i)   | From the list below tick ( $\checkmark$ ) $two$ physical properties of nitrogen gas.                                  |     |                             |
|   |     |       | very soluble in water                                                                                                 |     |                             |
|   |     |       | pale green coloured                                                                                                   |     |                             |
|   |     |       | colourless                                                                                                            |     |                             |
|   |     |       | odourless                                                                                                             |     |                             |
|   |     |       | sweet smelling                                                                                                        | [2] |                             |
|   |     | (ii)  | Nitrogen is used in the manufacture of ammonia. Give one other use of nitrogen.                                       | er  |                             |
|   |     |       |                                                                                                                       | [1] |                             |
|   | (b) |       | monia gas is manufactured in the Haber Process by reacting rogen with nitrogen: $N_2 + 3H_2 \rightleftharpoons 2NH_3$ |     |                             |
|   |     |       | 1 1 2 × 2 1 1 1 3                                                                                                     |     |                             |
|   |     | (i)   | What do the arrows (⇌) mean in the above equation?                                                                    | [4] |                             |
|   |     |       |                                                                                                                       | [1] |                             |
|   |     | (ii)  | Complete the table below to give the conditions needed for this reaction to occur. Include units where appropriate.   |     |                             |
|   | tei | mpe   | rature                                                                                                                |     |                             |
|   | ca  | talys | st                                                                                                                    |     |                             |
|   | pro | essu  | re                                                                                                                    |     |                             |
| ı |     |       | <u>'</u>                                                                                                              | [3] |                             |
|   |     |       |                                                                                                                       |     |                             |
|   |     |       |                                                                                                                       |     |                             |

| (iii) Give two uses of ammo | Give two uses of ammonia. |  |     |  |  |  |  |
|-----------------------------|---------------------------|--|-----|--|--|--|--|
| 1                           |                           |  |     |  |  |  |  |
| 2                           |                           |  | [2] |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |
|                             |                           |  |     |  |  |  |  |

7 (a) The diagram below shows a Blast Furnace, used in the manufacture of iron.

| Examiner Only |        |  |  |
|---------------|--------|--|--|
| Marks         | Remark |  |  |



(i) What is the common name for the iron ore used in the Blast Furnace?

\_\_\_\_\_\_[1]

(ii) Name the substances **A** and **B** that go into the top of the Blast Furnace.

A \_\_\_\_\_

**B**\_\_\_\_\_\_[2]

(iii) Name substance **X**, which goes into the bottom of the Blast Furnace.

\_\_\_\_\_[1]

(iv) How is the iron removed from the Blast Furnace?

\_\_\_\_\_[1]

|     | (v)  | Describe how the acidic impurities are removed from the Blast Furnace.                                                                | Examiner Only Marks Remark |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|     |      |                                                                                                                                       | . [2]                      |
| (b) | Fur  | bon monoxide is produced from carbon dioxide in the Blast nace. Write a balanced symbol equation to show how carbon noxide is formed. |                            |
|     |      |                                                                                                                                       | [3]                        |
| (c) |      | e extraction of iron in the Blast Furnace is an example of a redox ction.                                                             |                            |
|     | (i)  | What is meant by the term <b>redox</b> ?                                                                                              |                            |
|     |      |                                                                                                                                       |                            |
|     |      |                                                                                                                                       | [2]                        |
|     | (ii) | The extraction of iron from iron ore can be represented by the requation:                                                             | nalf                       |
|     |      | $Fe^{3+} + 3e^{-} \rightarrow Fe$                                                                                                     |                            |
|     |      | Explain, in terms of electrons, why this is a reduction reaction.                                                                     |                            |
|     |      |                                                                                                                                       | [2]                        |
|     |      |                                                                                                                                       |                            |
|     |      |                                                                                                                                       |                            |
|     |      |                                                                                                                                       |                            |

| 8 (4 | 5    | Methanol and ethanol are both members of the alcohol homologous eries. Define the term homologous series and outline the imilarities between methanol and ethanol.  You will be assessed on your written communication skills including the use of specialist scientific terms. | Examin Marks | er Only<br>Remark |
|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
|      | _    |                                                                                                                                                                                                                                                                                 |              |                   |
|      | -    |                                                                                                                                                                                                                                                                                 |              |                   |
|      | -    |                                                                                                                                                                                                                                                                                 |              |                   |
|      | -    |                                                                                                                                                                                                                                                                                 |              |                   |
|      | -    |                                                                                                                                                                                                                                                                                 |              |                   |
|      | -    |                                                                                                                                                                                                                                                                                 | [6]          |                   |
| (1   | b) ( | <ul><li>Ethanol is used as a clean fuel. Give two other uses of ethanol.</li><li>1.</li></ul>                                                                                                                                                                                   |              |                   |
|      |      | 2                                                                                                                                                                                                                                                                               | [2]          |                   |
|      | (    | i) Write a balanced symbol equation for the production of ethanol<br>from ethene.                                                                                                                                                                                               |              |                   |
|      |      |                                                                                                                                                                                                                                                                                 | [2]          |                   |
|      |      |                                                                                                                                                                                                                                                                                 |              |                   |

| (c)   | Pol  | ythene is a useful polymer made from ethene molecules.                                          | Examin<br>Marks |        |
|-------|------|-------------------------------------------------------------------------------------------------|-----------------|--------|
|       | (i)  | Write a balanced equation, using <b>structural formulae</b> , for the polymerisation of ethene. | Marks           | Remark |
|       |      | [4]                                                                                             |                 |        |
|       | (ii) | Polythene can be used to make plastic buckets.                                                  |                 |        |
|       |      | State two properties of polythene that make it suitable for this use.                           |                 |        |
|       |      | 1                                                                                               |                 |        |
|       |      |                                                                                                 |                 |        |
| _<br> | THIS | S IS THE END OF THE QUESTION PAPER                                                              |                 |        |
|       |      |                                                                                                 |                 |        |
|       |      |                                                                                                 |                 |        |

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.