

Centre Number		
71		
Cano	didate Number	

General Certificate of Secondary Education 2013–2014

Double Award Science: Physics

Unit P1

Foundation Tier

[GSD31]

GSD31

FRIDAY 15 NOVEMBER 2013, AFTERNOON

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all nine** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question **7**.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total Marks		

1 (a) A microphone is designed to change sound energy into electrical energy, as shown below.

Examiner Only Marks Remark

Fill in the spaces below to show the type of energy change the device is designed to bring about.

2 Recently, the Chinese government decided to invest heavily in building nuclear power stations to generate electricity.

State two advantages and two disadvantages in building nuclear power stations.

Advantages

1	
2	[2]
Disadvantages	
1	
2	[2]

3 An athlete can run 200 m in a time of 25.0 s.

© iStock / Thinkstock

(a) Calculate the average speed of the athlete.

You are advised to show your working out.

Average speed = _____ m/s [3]

(b) During the race, the athlete increases his velocity from 5.0 m/s to 8.0 m/s in a time of 2.0 s.

Calculate the acceleration of the athlete.

You are advised to show your working out.

Acceleration = m/s^2 [4]

Examiner Only Marks Remark **4** (a) A student used the displacement method to find the density of coal.

Examiner Only

During the Olympics, a weightlifter lifted a 140 kg bar from the floor to a beight of 2.5 m	Examiner Only Marks Remark
2.5 m	
© Comstock / Stockbyte / Thinkstock	
(i) Calculate the weight of the bar.	
Weight = N [1]	
The weightlifter uses a constant force to lift the bar 2.5m above the floor.	
(ii) Calculate the work done by the weightlifter.	
You are advised to show your working out.	
Work done = J [3]	
To achieve maximum points, the weightlifter must hold the bar stationary above his head for 2 seconds.	
(iii) How much work is done on the bar during these two seconds?	
Circle the correct answer.	
0 280 900 1800 3500	
Give a reason for your answer.	
[2]	

5

6	The diagram below shows some of the forces acting on a racing car which is moving forwards	Examiner Only Marks Remark
	2000 N 2000 N	
	(i) Describe the movement of this racing car.	
	The forwards force is increased to 3600 N, the backwards force remains constant at 2000 N.	
	(ii) Describe fully the movement of the racing car.	
	[2]	
	(iii) Calculate the size of the resultant force acting on the racing car.	
	Resultant force = N [1]	
	The mass of the racing car is 800 kg.	
	(iv) Use the formula:	
	acceleration = $\frac{\text{resultant force}}{\text{mass}}$	
	to calculate the acceleration of the racing car.	
	You are advised to show your working out.	
	Acceleration = m/s ² [2]	

7 The modern theory for the structure of the atom is quite different from the earlier theory which it replaced.

Write a brief account of both theories.

Your discussion should include:

- the name of each theory; and
- a description of how the particles are arranged in each theory.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Examiner Only

Marks Remark

8 (a)	The symbol for Ur	anium-235 is		Examiner Only Marks Remark
		²³⁵ ₉₂ U		
	(i) How many pro	otons does a nucleus of Ur	anium-235 contain?	
	(ii) What name is	given to this number of pro	otons?	
	(iii) How many ne	utrons does a nucleus of L	Iranium-235 contain?	
	(iv) What name is the nucleus of	given to the total number of Uranium-235?	[1]	
			[1]	
(b)	Radioactive mater and properties. Complete the table	rials emit radiations which h e below, linking the radiation	nave particular natures	
	properties. One ar Use only five strai	row has been inserted for i	you.	
Natu	ure of radiation	Name of radiation	Property of radiation	
ŀ	lelium nuclei	● alpha ●	Is absorbed by a few cm of air	
Hi electro	igh frequency magnetic radiation	● beta ●	Can penetrate 3cm of lead	
	High speed electrons	∙gamma ∙	Can penetrate a thick piece of card, but not 3 cm of lead	
			[5]	

(c)	Nuc	lear reactors rely on the fission of Uranium-235.		Examin	er Only Pomark
	(i)	What is the first stage of the nuclear fission process?		Marks	Kemark
			_ [2]		
	(ii)	What happens during the nuclear fission process?			
			[2]		
	(iii)	What is the name of the particle which sustains the chain reaction?	_ [-]		
			_ [1]		

9 Gillian is investigating "bending beams". She uses the apparatus shown below.

Examiner Only Marks Remark

According to theory, the mathematical relationship between the deflection (D) of the beam and the mass (M) hung from the beam is given by

D = k M Equation 9.1

The results Gillian collected are as follows.

Mass M in g	Deflection D in mm
50	1.5
100	3.0
150	4.5
200	6.0
250	7.5

(a) Choose a suitable horizontal scale and label the horizontal axis. Plot a Examiner Only graph of **D** on the vertical axis versus **M** on the horizontal axis on the Marks Remar grid below. 8 7 6 5 Deflection **D** in mm 4 3 2 1 0 0 [4] (b) Draw a line of best fit. [1] (c) (i) Use your graph to determine the constant k, in **Equation 9.1**. Remember to include the unit for k. k = _____: Unit = _____ [4] (ii) Use your graph to find the deflection for a mass of 125 g. Deflection = _____ mm [1] THIS IS THE END OF THE QUESTION PAPER

Sources:

Microphone_105551541_iStockphoto_Thinkstock.com Electric heater_158323664_iStockphoto_Thinkstock.com Trampoline_153491970_iStockphoto_Thinkstock.com Desk lamp_91649982_iStockphoto_Thinkstock.com

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.