

Ce	ntre Number
71	
Cano	didate Number

General Certificate of Secondary Education 2013–2014

Double Award Science: Chemistry

nit	C1	
	nit	nit C1

Higher Tier

[GSD22]

	2
	<u>8</u> 202
	Ű
Ξ	=

THURSDAY 14 NOVEMBER 2013, MORNING

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper. Answer **all six** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **5**. A Data Leaflet which includes a Periodic Table of the Elements is provided.

For Examiner's use only		
Question Number	Marks	
1		
2		
3		
4		
5		
6		
Total Marks		

8923

BLANK PAGE

1 The balanced symbol equation below includes state symbols. Examiner Only Marks Remark $K_2CO_3 (s) + 2 HCI (aq) \rightarrow 2 KCI (aq) + H_2O (l) + CO_2 (g)$ Look at the equation carefully and answer the questions which follow. (a) Name the product which is dissolved in water. _____ [1] (b) Name the solid reactant. _____ [1] (c) Suggest two observations which can be made when the reactants are added together. 1. _____ [1] 2. _____ [1] (d) Complete the table below to give information about the elements present in a substance which has the formula K_2CO_3 . Number of atoms of the Name of element element in the formula [3]

at el	the 1860s chemists had discovered about 60 elements and were tempting to organise them by looking for patterns. Today, over 100 ements are known and they are arranged in a particular way in the odern Periodic Table.		Examin Marks	er Only Remark
(a) Explain what is meant by the term element.			
(b) One suggested pattern was called "The Law of Octaves".			
	(i) Name the chemist who developed "The Law of Octaves".	[1]		
	(ii) Complete the sentence to explain what is meant by "The Law Octaves".	/ of		
	When elements are arranged in order of their			
	every eighth element has	_ [2]		
(c) In what order are the elements arranged in the modern Periodic Table?			
		_ [1]		
(d) What names are given to the rows and columns of elements in the modern Periodic Table?	e		
	(i) rows	_ [1]		
	(ii) columns	_ [1]		

(e) The diagram below shows an outline of part of the modern Periodic Examiner Only Marks Remark Table with a shaded area. The elements in the shaded area in the diagram have similar physical properties. Give two physical properties of the elements in this area. 1. _____ [1] 2. _____ [1] (f) On the outlines of the Periodic Tables below shade in the area where the: (i) halogens can be found. (ii) alkaline earth metals can be found. [2]

	(iii)	Draw a dot and cross diagram of a molecule of carbon dioxide (CO_2) . Show the outer electrons only.	Examiner 0 Marks Re	Only emark
			[3]	
	(iv)	On your diagram of the molecule of carbon dioxide above label lone pair of electrons.	a [1]	
	(v)	Give two typical physical properties of molecules such as methane and carbon dioxide.		
		1		
		2	[1]	
(d)		en carbon dioxide dissolves in water it forms carbonic acid, H ₂ C n a pH range of 4–5.	O ₃	
	(i)	What is the formula of the ion which is present in all acids?		
			[1]	
	(ii)	Why is carbonic acid described as a weak acid?		
			[1]	

Aluminium is produced on an industrial scale by the electrolysis of 4 Examiner Only Marks Remark aluminium oxide. (a) A mixture of aluminium oxide and substance X is melted at the start of the process. The mixture has a lower melting point than the pure aluminium oxide. (i) Balance the symbol equation below which describes the production of aluminium from aluminium oxide. $Al_2O_3 \rightarrow Al + O_2$ [2] (ii) Explain what is meant by the term electrolysis. _____ [2] Substance X lowers the melting point of aluminium oxide. (iii) Name substance X. _____ [1] (iv) Give one other reason why substance X is added to the aluminium oxide. _____ [1] (b) As the process continues aluminium ions move to the cathode. (i) Draw a diagram showing the electronic structure of the aluminium ion and give the charge. [2]

	(ii)	Why do the aluminium ions move to the cathode?	Examiner C Marks Re	Only emark
		[2]		
	(iii)	Explain, in words , what happens to the aluminium ions at the cathode.		
		[3]		
(c)	arra	e structure of aluminium metal can be described as a regular angement of aluminium ions surrounded by a sea of delocalised ctrons.		
	(i)	Describe the metallic bonding in a sample of aluminium metal.		
		[1]		
	(ii)	Explain, in terms of its structure , why aluminium can be drawn into thin wires i.e. is ductile.		
			-	
		[3]		

eteesium and applium both report with water. Departing similarities and		
Potassium and sodium both react with water. Describe similarities and ifferences between these reactions.		
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
	-	
[6]		

In this question you will be assessed on your written communication

BLANK PAGE

(Questions continue overleaf)

6 Displacement reactions of the halogens can be used to work out a Examiner Only Marks Remar reactivity series for the elements in Group 7. (a) Explain what is meant by a displacement reaction. _____ [1] (b) A student investigated the trend in reactivity within Group 7 (bromine, chlorine and iodine). Firstly, a small amount of chlorine solution was added to potassium bromide solution in a test tube and the mixture was shaken. The solution in the test tube turned an orange-brown colour showing that a reaction had taken place. The investigation was continued by mixing different halogen solutions with different halide solutions, e.g. iodine solution with potassium chloride. The results are summarised in the table below: potassium potassium potassium bromide solution chloride solution iodide solution bromine solution no reaction reaction chlorine solution reaction reaction iodine solution no reaction no reaction (i) Why does the solution turn orange-brown when chlorine solution is mixed with potassium bromide solution? _____ [1] (ii) Using the results in the table, which of the three halogens, bromine, chlorine or iodine, is the most reactive? _____ [1]

	(iii) Based on the trend in reactivity found in the investigation, predict the reactivity of fluorine and put the four halogens, bromine,	Examiner Only Marks Remark
	chlorine, iodine and fluorine in order of reactivity, most reactive first.	
	[2]	
(c)	Explain, in terms of their electronic configuration, why the halogens have similar chemical properties.	
	[2]	
(d)	lodine is a flaky dark grey solid which does not conduct electricity and which sublimes easily when warmed. Put a tick (✓) beside the type of structure which is most likely to represent solid iodine.	
	For each of the other three structure types give one reason why it is not correct for solid iodine.	
	ionic lattice	
	[1]	
	molecular covalent	
	[1]	
	giant covalent	
	[1]	
	metallic [1]	
	[']	
	THIS IS THE END OF THE QUESTION PAPER	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.