

Ce	Centre Number				
71					
Candidate Number					

General Certificate of Secondary Education 2012–2013

Double Award Science: Chemistry

Unit C1

Foundation Tier

[GSD21]

GSD21		
GSD21		
GSD2		<u> </u>
CSD2		ò
CSD GSD		5
		ir n
		5
	-	ιŪ,
		רי
		0
	-	

TUESDAY 26 FEBRUARY 2013, MORNING

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper.

Answer all eight questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question **8(b)**. A Data Leaflet which includes a Periodic Table of the elements is provided.

For Examiner's use only					
Question Number	Question Number Marks				
1					
2					
3					
4					
5					
6					
7					
8					
Total Marks					

Description	Symbol/formula
Description	Cymbol/formala
s used for making flares	Ar
	Μα
s used in making pencil lead	
	Fe
s used for overhead electrical wiring	
	0 ₂
s an unreactive gas found in air	C
s used to make bridges	AI [5]

(a) The picture shows a £5 coin designed for the Olympic Games. Examiner Only Marks Remark This £5 coin is made of 75% copper and 25% nickel. © Coin Gallery (i) What name is given to a substance that is a mixture of two or more different metals? _____ [1] (ii) Give two reasons why metals are suitable for making coins. 1._____ 2._____[2]

(b)	The table below gives information about different coins.
	Use this data to answer the following questions.

Coin	Mass (g)	Thickness (mm)	Composition	% metal	
			copper	70	
£1	9.5	3.15	zinc	24.5	
			nickel	5.5	
			copper	76	
£2	12.0	2.50	zinc		
			nickel	4	
FOr	8.0	1 70	copper	75	
Sob	0.9	1.70	nickel	25	
200	5.0	1 70	copper	84	
20p	5.0	1.70	nickel	16	
			copper	97	
2р	7.12	7.12 1.85	zinc	2.5	
			tin	0.5	
(i)	What is the	percentage cor	mposition of zinc i	Source: Royal Mint n a £2 coin? %	[1]
(ii)	Which coin o	contains the hig	ghest percentage	of copper?	[.]
					[1]
(iii)	Calculate the the lightest of	e difference in coin.	thickness betwee	n the heaviest and	
	You must s	how your wor	king out.		
			_	mm	[3]

Examiner Only Marks Remark 4 The table below shows the atomic numbers and mass numbers for six elements.

Examiner Only Marks Remark

element	carbon	nitrogen	oxygen	fluorine	neon	sodium
atomic number	6	7	8	9	10	11
mass number	12	14	16	19	20	23

(a) The electrons in atoms are arranged in shells.

What is the largest number of electrons that can fit into the **first** shell of each of the atoms in the table?

_____[1] (b) Which element in the table has 8 protons in the nucleus of its atoms? _____ [1] (c) What is the electronic configuration of a sodium atom? _____ [1] (d) Explain why the sodium atom has no electrical charge. _____ [1] (e) The mass number of fluorine is 19. What is meant by the term **mass number**? _____ [1] (f) Carbon can exist in two different forms with different mass numbers. What name is given to atoms of the same element with different mass numbers? _____ [1]

Α	В	С	D		
carbon	lithium	helium	chlorine		
silicon	sodium	neon	bromine		
lead	potassium	argon	iodine		
(i) Which co	blumn, A , B , C or	D, contains hald	ogens?		
				[1]	
(iii) Which el	ement in the table	e is a liquid at ro	om temperature	2	
				[1]	
Which colum	n, A , B , C or D , h	as three elemen	ts which all read	ct with	
water to form	solutions with a p	pH greater than	/?		
				[1]	
				[1]	
Describe fully	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1] n is 	
Describe fully added to wat	/ what you would er.	observe when a	a piece of lithium	[1]	
Describe fully added to wat	v what you would er.	observe when a	a piece of lithium	[1]	
Describe fully added to wat	v what you would er. • word equation fo er →	observe when a	a piece of lithium	[1] [4] ter. [2]	
Describe fully added to wat	v what you would er. • word equation fo er →	observe when a	a piece of lithium	[1] [4] ter. [2]	
Describe fully added to wat	r what you would er. • word equation for er →	observe when a	a piece of lithium	[1] [4] ter. [2]	
Describe fully added to wat	v what you would er. • word equation fo er →	observe when a	a piece of lithium	[1] h is [[4] ter. [2]	

6 (a) Indicators can change colour in acid and alkaline solutions. Indicators can be made from plant material such as red cabbage.

The table below gives information about three different indicators. Use this information to answer the questions that follow.

Substance	Colour of universal indicator paper	Colour of red litmus paper	Colour of red cabbage solution	pH range
hydrochloric acid	red	red	red	1–2
sodium hydroxide	dark blue	blue	yellow	12–14
water	green	red	purple	7
ethanoic acid	orange	red	red	3–6

(i) Why is red litmus paper not a suitable indicator for testing pH?

_____ [1]

Examiner Only Marks Remark

(ii) Explain why red cabbage solution can be described as an indicator.

(iii) Why is universal indicator a better indicator than red cabbage solution for testing acids?

[2]

_____ [1]

(b) The diagram below shows a way of measuring pH.

Give an advantage of using a pH probe instead of an indicator solution to measure pH.

[1]

Examiner Only Marks Remark

(c) When copper(II) carbonate reacts with an acid it forms copper(II) sulfate. Complete the word equation for this reaction.

copper(II) darbonate	÷	\rightarrow	copper(II) sulfate	+	+
					[3]

(d) The colour of copper(II) sulfate crystals changes as they are heated.

The colour and formulae of three types of copper(II) sulfate are given in the table below.

Colour	Formula
blue	CuSO ₄ .5H ₂ O
green	CuSO ₄ .H ₂ O
white	CuSO ₄

 Give the formula of the type of copper(II) sulfate that would be best to test for the presence of water. Explain your answer.

[2]	
	[2]

(ii) What word is used to describe white copper(II) sulfate?

[1]

Potassium and fluorine react violently together to form the compound Examiner Only Marks Remark potassium fluoride. (a) Complete the diagrams below to show the arrangements of all the electrons in a potassium atom and a fluorine atom. fluorine atom potassium atom [2] (b) Describe how a potassium atom becomes an ion and how a fluorine atom becomes an ion. You should state the formula of each ion. _____ [4] (c) How are the ions held together in potassium fluoride? _____ [1] (d) What is the formula for potassium fluoride? _____ [1]

BLANK PAGE

(Questions continue overleaf)

(a) Give an accurate definition of the term solubility. 8 Examiner Only Marks Remark _ [4] In part (b) you will be assessed on your written communication skills including the use of specialist scientific terms. (b) A student wanted to obtain results to plot a solubility graph for potassium chlorate. The first three stages of the method used are shown below. thermometer water water bath 4 g potassium chlorate ٥ ٥ ٥ heat Stage 1 Stage 2 Stage 3 Stage 1: 4 g of potassium chlorate are placed in a boiling tube. Stage 2: 10 cm³ of water are added. Stage 3: The boiling tube is placed in a water bath and heated until all the potassium chlorate has dissolved. The boiling tube is then removed from the water bath.

			[6]	
In a similar expe	eriment a student obtained	the following results.	She	
In a similar expe used 2g of potas Mass of water	eriment a student obtained ssium chlorate each time. Temperature at which	the following results. Solubility in water	She	
In a similar expe used 2g of potas Mass of water (g)	eriment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C)	the following results. Solubility in water (g/100 g)	She	
In a similar expe used 2 g of potas Mass of water (g) 4	eriment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92	the following results. Solubility in water (g/100 g) 50.0	She	
In a similar expe used 2 g of potas Mass of water (g) 4 8	eriment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63	the following results. Solubility in water (g/100 g) 50.0 25.0	She	
In a similar expense used 2 g of potas Mass of water (g) 4 8 12	eriment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63 48	the following results. Solubility in water (g/100 g) 50.0 25.0	She	

(d) A solubility curve for potassium chlorate is shown below.

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.