

Ce	ntre Number
71	
Cano	didate Number

General Certificate of Secondary Education 2012–2013

Double Award Science: Chemistry

U	nit	C1
-		• •

Higher Tier

[GSD22]

	D22
	Q

TUESDAY 26 FEBRUARY 2013, MORNING

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper. Answer **all eight** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in question **3(b)**. A Data Leaflet which includes a Periodic Table of the elements is provided.

For Exa use	For Examiner's use only			
Question Number	Marks			
1				
2				
3				
4				
5				
6				
7				
8				
Total Marks				

1 (a) Indicators can change colour in acid and alkaline solutions. Indicators can be made from plant material such as red cabbage.

The table below gives information about three different indicators. Use this information to answer the questions that follow.

Substance	Colour of universal indicator paper	Colour of red litmus paper	Colour of red cabbage solution	pH range
hydrochloric acid	red	red	red	1–2
sodium hydroxide	dark blue	blue	yellow	12–14
water	green	red	purple	7
ethanoic acid	orange	red	red	3–6

(i) Why is red litmus paper **not** a suitable indicator for testing pH?

_____ [1]

Examiner Only Marks Remark

(ii) Explain why red cabbage solution can be described as an indicator.

(iii) Why is universal indicator a better indicator than red cabbage solution for testing acids?

[2]

_____ [1]

(b) The diagram below shows a way of measuring pH.

Give an advantage of using a pH probe instead of an indicator solution to measure pH.

[1]

Examiner Only Marks Remark

(c) When copper(II) carbonate reacts with an acid it forms copper(II) sulfate. Complete the word equation for this reaction.

copper(II) carbonate +	$ ightarrow egin{array}{c} {\sf copper(II)} \ {\sf sulfate} \end{array} +$	+
		[3]

(d) The colour of copper(II) sulfate crystals changes as they are heated.

The colour and formulae of three types of copper(II) sulfate are given in the table below.

Colour	Formula
blue	CuSO ₄ .5H ₂ O
green	CuSO ₄ .H ₂ O
white	CuSO ₄

 Give the formula of the type of copper(II) sulfate that would be best to test for the presence of water. Explain your answer.

Formula:	[1]	
Explanation:		
	[2]	

(ii) What word is used to describe white copper(II) sulfate?

[Turn over

Potassium and fluorine react violently together to form the compound Examiner Only Marks Remark potassium fluoride. (a) Complete the diagrams below to show the arrangements of all the electrons in a potassium atom and a fluorine atom. fluorine atom potassium atom [2] (b) Describe how a potassium atom becomes an ion and how a fluorine atom becomes an ion. You should state the formula of each ion. _____ [4] (c) How are the ions held together in potassium fluoride? _____ [1] (d) What is the formula for potassium fluoride? _____ [1]

BLANK PAGE

(Questions continue overleaf)

(a) Give an accurate definition of the term solubility. 3 Examiner Only Marks Remark _ [4] In part (b) you will be assessed on your written communication skills including the use of specialist scientific terms. (b) A student wanted to obtain results to plot a solubility graph for potassium chlorate. The first three stages of the method used are shown below. thermometer water water bath 4 g potassium chlorate ٥ ٥ ٥ heat Stage 1 Stage 2 Stage 3 Stage 1: 4 g of potassium chlorate are placed in a boiling tube. Stage 2: 10 cm³ of water are added. Stage 3: The boiling tube is placed in a water bath and heated until all the potassium chlorate has dissolved. The boiling tube is then removed from the water bath.

[6] In a similar experiment a student obtained the following results. She used 2g of potassium chlorate each time. Mass of water (g) Temperature at which crystals formed (°C) Solubility in water (g/100 g) 4 92 50.0 8 63 25.0 12 48 16 16 35 12.5 Calculate the solubility which is missing in the table. You must show				
[6]In a similar experiment a student obtained the following results. She used 2g of potassium chlorate each time.Mass of water (g)Temperature at which crystals formed (°C)Solubility in water (g/100 g)49250.086325.0124816163512.5Calculate the solubility which is missing in the table. You must show				
IotIn a similar experiment a student obtained the following results. She used 2g of potassium chlorate each time.Mass of water (g)Temperature at which crystals formed (°C)Solubility in water (g/100 g)49250.086325.0124816163512.5Calculate the solubility which is missing in the table. You must show				[6]
Mass of water (g)Temperature at which crystals formed (°C)Solubility in water (g/100 g)49250.086325.0124816163512.5Calculate the solubility which is missing in the table. You must show				[0]
4 92 50.0 8 63 25.0 12 48 16 35 12.5 Calculate the solubility which is missing in the table. You must show	In a similar expe used 2g of potas	riment a student obtained ssium chlorate each time.	the following results.	She
86325.01248163512.5	In a similar expe used 2 g of potas Mass of water (g)	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C)	the following results. Solubility in water (g/100 g)	She
1248163512.5Calculate the solubility which is missing in the table. You must show	In a similar expense used 2 g of potas Mass of water (g) 4	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92	the following results. Solubility in water (g/100 g) 50.0	She
163512.5Calculate the solubility which is missing in the table. You must show	In a similar expense used 2 g of potas Mass of water (g) 4 8	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63	the following results. Solubility in water (g/100 g) 50.0 25.0	She
Calculate the solubility which is missing in the table. You must show	In a similar expense used 2 g of potas Mass of water (g) 4 8 12	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63 48	the following results. Solubility in water (g/100 g) 50.0 25.0	She
	In a similar expe used 2 g of potas Mass of water (g) 4 8	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63	the following results. Solubility in water (g/100 g) 50.0 25.0	She
	In a similar expense of potase 2 g of potase 2 g of potase Mass of water (g) 4 4 8 12 16 Calculate the sol your working or	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63 48 35 lubility which is missing in ut.	the following results. Solubility in water (g/100 g) 50.0 25.0 12.5 the table. You must set	She show
	In a similar expense used 2 g of potas Mass of water (g) 4 8 12 16 Calculate the sol your working of	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63 48 35 lubility which is missing in ut.	the following results. Solubility in water (g/100 g) 50.0 25.0 12.5 the table. You must set of the table.	She show
	In a similar expensed 2 g of potas Mass of water (g) 4 8 12 16 Calculate the sol your working of	riment a student obtained ssium chlorate each time. Temperature at which crystals formed (°C) 92 63 48 35 lubility which is missing in ut.	the following results. Solubility in water (g/100 g) 50.0 25.0 12.5 the table. You must set the table.	She show

(d) A solubility curve for potassium chlorate is shown below.

4 Complete the table below about chemical formulae.

Chemical formula	Name of non-metal ion	Number of oxygen atoms in the formula	Total number of atoms in the formula
Na ₂ CO ₃	carbonate	3	
Fe(OH) ₃	hydroxide		7
Cu(NO ₃) ₂		6	9
Mg(HCO ₃) ₂	hydrogencarbonate		

[5]

Examiner Only Marks Remark

5 Covalent bonds form when atoms share electrons. Examiner Only The diagram below shows the outer electrons in a molecule of carbon Marks Remarl dioxide. С Ο × X (a) On the diagram above, label using arrows: (i) a double covalent bond (ii) a lone pair. [2] (b) Draw a dot and cross diagram for a molecule of ammonia NH₃. Show only the **outer** electrons. [2] (c) Most molecular covalent substances are insoluble in water. Give two other typical properties of molecular covalent substances. 1. _____ 2. _____ [2]

BLANK PAGE

(Questions continue overleaf)

			0				Ма	rks Rem
a) Part o	of Newland	s' table is	shown bel	ow. Use tl	nis table to	help you		
answ	ver parts (a)	(ii) and (a)(iii).				1	
Н	Li	Be	В	С	N	0	-	
F	Na	Mg	Al	Si	Р	S	-	
CI	K	Са	Cr	Ti	Mn	Fe		
(i) V J (ii) C p (iii) N n	What name John Newla Give the syr placed toget Newlands' ta nissing?	is given to nds? mbols of ti ther in the	o the repea	ents that Numn.	rn that was	s noticed	by _ [1] _ [1] is _ [1]	
(iv) G) Dmitr What	Give one otl	her uncert	ainty or lin ed a more res of his F	nitation of detailed F Periodic Ta	Newlands' Periodic Ta able?	theory.	_ [1]	

1		
2		
3		
	[3]	
	[J]	

А								
А		-210	-196	does not conduct	does not conduct			
В		600	2350	conducts	conducts			
С		808	1465	does not conduct	conducts			
D		114	184	does not conduct	does not conduct			
E		3550	4827	does not conduct	does not conduct			
(a) (b)	Which Which	substance, substance,	A, B, C, D c	or E, is a gas at room or E, has an ionic latt	i temperature? [1 ice structure?			
(c)	Which substances, A, B, C, D or E, have a molecular covalent structure?							
				n 🗖 ja maat likakuta	-			
(d)	Which water?	substance,	A, B, C, D c	or E, is most likely to	be soluble in			
(d) (e)	Which water? Substa	substance,	A, B, C, D o be used in c E and give a	eutting tools.	be soluble in [1 vhich makes it			
(d) (e)	Which water? Substa Name suitabl	substance, ance E can I substance I le for use in	A, B, C, D o be used in c E and give a cutting tools	eutting tools.	be soluble in [1			
(d) (e)	Which water? Substa Name suitabl name:	substance, ance E can l substance f le for use in	A, B, C, D o be used in c E and give a cutting tools	eutting tools.	be soluble in [1 which makes it [1			

7 Substances can be classified by their structures as ionic lattice, molecular covalent, giant covalent or metallic.

Electrical conductivity

Liquid

Solid

Boiling

point

(°C)

Melting

point

(°C)

Substance

Examiner Only

Marks Remark

hroug	gh molten lead bromide.		Marks	Re
	molten lead bromide			
a) W	/hat name is given to the process shown in the diagram?			
_		[1]		
b) T su	he electrodes are made of graphite. Explain fully why graphite i uitable material for this reaction.	s a		
_		[2]		
c) W at	/rite a half equation (ionic equation) for the reaction that takes p t the anode .	blace		
		[2]		

The diagram below shows the apparatus used to pass an electric current

Examiner Only

(d) The table below gives the melting points of four metal halides.

Metal halide	Melting point (°C)
sodium chloride	801
potassium chloride	772
lead bromide	367
calcium chloride	782

Suggest why lead bromide is chosen, in preference to the other three halides, to demonstrate the process shown in the diagram on the previous page.

[2]

Examiner Only Marks Remark

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.