

Centre Number				
71				
Cano	didate Number			

General Certificate of Secondary Education 2012–2013

Double Award Science: Physics

Unit P1

Foundation Tier

[GSD31]

	GSD31

WEDNESDAY 27 FEBRUARY 2013, MORNING

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper. Answer **all ten** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **9**.

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
Total Marks			

8540

(a) In this question you have to distinguish the quantities mass and weight, words with precise meanings in Physics.

In each of the following sentences write the word **mass** or **weight**, in the spaces provided.

Examiner Only

Marks Remar

An example has been done for you.

Example: <u>Mass</u> is the amount of matter in a body.

- (i) The ______ of a body does not vary. [1]
- (ii) The ______ of a body has size and direction. [1]
- (iii) ______ is measured using a top-pan balance. [1]
- (iv) The ______ of a body is a force. [1]
- (b) Boilers, turbines and generators are used in power stations.

Use the words from the box to complete the energy transfer process involved in a coal fired power station.

One has been done for you.

Examiner Only

1200 cm³. Marks Remark (i) Calculate the density of the wood in g/cm^3 . You are advised to show your working out. Density = $____ g/cm^3$ [3] (ii) The block of wood is now cut into two sections A and B. Section B is twice the mass of section A. section A section B What effect, if any, will this have on the density of each section? _____ [1]

The block of wood shown below has a mass of 960 g and a volume of

2

3 The plan below shows the bus journey from Belfast to Maghera.

4 (i) Complete the formula for momentum, in words.

Momentum =

(ii) Calculate the momentum of a car of mass 800 kg travelling at 20 m/s. Remember to include the units for momentum.

You are advised to show your working out.

Momentum = _____ [3]

Examiner Only Marks Remark

[1]

_____ [2]

Examiner Only Marks Remark

(ii) A vase contains water.

Mark on the diagram, with an X, the approximate position of its centre of gravity.

[1]

(iii) A large bunch of tall flowers is put into the vase.

State and explain how the stability of the vase is affected.

[2]

- 6 Wheel-braces are used to remove wheel nuts.
 - (i) Explain why wheel-braces are designed so that they may be extended.

Unextended wheel-brace

Extended wheel-brace © Chief Examiner, CCEA

_____ [1]

Examiner Only

Marks Remar

(ii) Calculate the moment of a force, in Nm, when a force of 20 N is applied to a wheel-brace of length 40 cm.

You are advised to show your working out.

Moment = _____ N m [4]

(iii) A motorist applies a force vertically upwards at the handle, in the first diagram above. State the direction of the moment.

Direction: _____ [1]

Examiner Only Marks Remark

(i)	Leads from battery motor stopwatch BBB 0.8 kg load Calculate the work done in raising the load from B to A. You are advised to show your working out.
(ii)	Work done = J [4] What time interval should be measured to allow you to calculate the

(iii) The time interval measured was 4.0 seconds. Calculate the output power of the motor in watts. You are advised to show your working out.

 $Power output = ___ W [3]$

(iv) The time taken to raise the load is too short to measure accurately. Using the apparatus shown how could you get a more accurate measurement of the power output of the motor?

9

[1]

The motor lifts a load of 0.8 kg through a height of 0.75 m.

8 (a) The diagram illustrates a neutral atom.

			Marks	Remark
A: _				
B: _				
(i)	Complete the diagram by writing in the spaces above, the four missing labels.	[4]		
(ii)	Explain why atoms are neutral.			
		[1]		
(iii)	Give two differences between the atom drawn above and an alpha particle.			
	1			
	2	[2]		

Examiner Only

(b) Nuclear reactors are used in power stations to release energy through Examiner Only Marks Remark nuclear fission. © Dr Jeremy Burgess / Science Photo Library (i) What is meant by nuclear fission? _____ [3] (ii) Name two fissionable substances commonly used in nuclear reactors. 1. _____ 2._____[2]

11

9 Describe, in detail, an experiment to verify the Principle of Moments.

In your description you should include:

- the apparatus used;
- how the apparatus is used to test the Principle of Moments; and
- the formula you would use to test the Principle of Moments.

In this question you will be assessed on your written communication skills including the use of specialist scientific terms.

Examiner Only Marks Remark

BLANK PAGE

(Questions continue overleaf)

10 A mass hangs on the end of a spring. When the mass is pulled down and released then it will oscillate up and down.

When the spring carries a mass (m), the time taken (T) for one complete up and down movement is given by the relationship:

 $T^2 = K m$ Equation 10.1

where **K** is a constant.

To test the relationship, the following experimental results were recorded.

m in kg	0	0.1	0.2	0.3	0.4	0.5
T in s	0	0.63	0.90	1.10	1.26	1.41
T ² in s ²	0			1.2		

(i) Complete the table by entering the values for T^2 , to 1 decimal place.

One has been done for you.

[2]

Examiner Only

Marks Remark

(ii) Choose a suitable scale for the vertical axis and plot a graph of T^2 on Examiner Only Marks Remar the vertical axis versus m on the horizontal axis. [3] T^2 in s^2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 m in kg (iii) Draw the best fit line. [1] (iv) Does your graph support the theory described by Equation 10.1? Explain your answer. _ [2] (v) Find the value of K from the graph. You are advised to show your working out. K =______s^2/kg [2]

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.