

Ce	Centre Number					
71						
Cano	didate Number					

General Certificate of Secondary Education 2013

Double Award Science: Physics

Unit P2

Foundation Tier

[GSD61]

THURSDAY 13 JUNE, MORNING

TIME

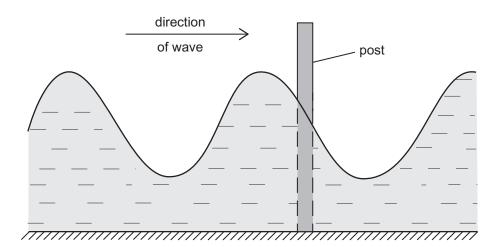
1 hour 15 minutes, plus your additional time allowance.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all eight** questions.

INFORMATION FOR CANDIDATES


The total mark for this paper is 90.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in Question **7(b)**.

For Examiner's use only				
Question Number Marks				
1				
2				
3				
4				
5				
6				
7				
8				

Total	
IOtai	
Marks	
IVIAINS	

1 A stone is thrown into a lake. This makes water waves. These waves pass a post which sticks out of the water.

Examiner Only					
Marks	Remark				

In 4 seconds, 12 waves pass the post.

(i) What piece of apparatus is needed to measure how long it takes twelve waves to pass the post?

_____[1]

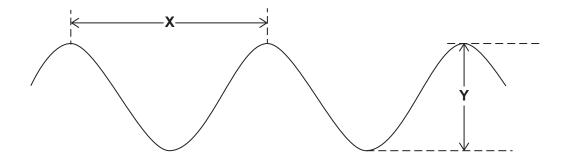
(ii) What is the frequency of the wave? Remember to write the unit in your answer.

Frequency = _____ [2]

(iii) The waves go from where the stone enters the water, past the post. What do the waves carry?

Choose from the list below and put a tick (\checkmark) in the correct box.

sound energy


[1]

(iv) The amplitude of the wave is 3 cm and its wavelength is 5 cm. A part of the wave is illustrated below.

Examiner Only

Marks Remark

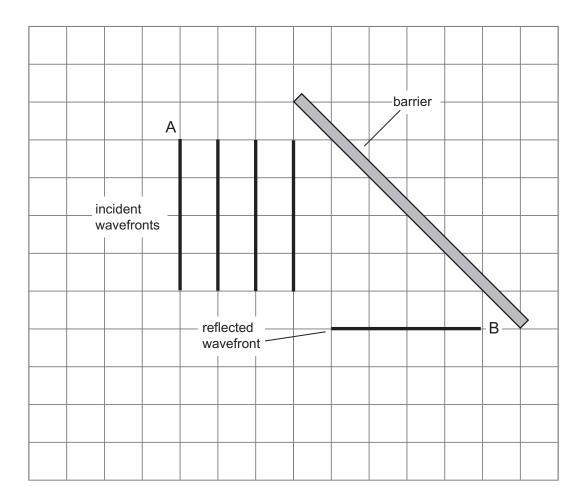
What are the distances **X** and **Y** marked on the diagram?

Distance **X** = _____ cm

Distance **Y** = _____ cm [2]

(v) Use your answer to part (ii) to calculate the speed of the water wave in cm/s. Remember the wavelength of the wave is 5 cm.

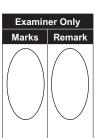
Show your working out.

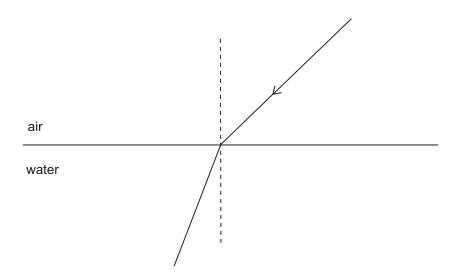

(vi) Water waves are transverse waves. Give two other examples of transverse waves.

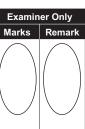
1. _____

2. _____ [2]

2 Look at the diagram below. Ripple tanks are sometimes used in the laboratory to show how water waves behave.

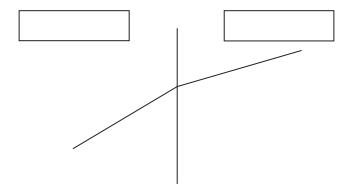

In one experiment plane waves strike a barrier which is set at an angle to the wavefronts as shown.


(ii) Reflected wavefront B is shown in the diagram.


Draw **two** more wavefronts below wavefront B. [3]

(b)	(i)	Write the missing word to complete the sentence below.		Examin Marks	er Only Remark
		Radio waves, infrared radiation and X-rays are all part of a fam	ily		
		of waves called the spectrum.	[1]		
	(ii)	Arrange the waves, referred to in (b)(i) in order of wavelength. Start with the smallest wavelength.			
			[1]		
	(iii)	Name a wave, other than the three waves above , which has wavelength smaller than the wavelength of visible light.	a		
			[1]		
(c)	Wri	te down one use and one danger of infrared radiation.			
	Use		[1]		
	Dar	nger	[1]		

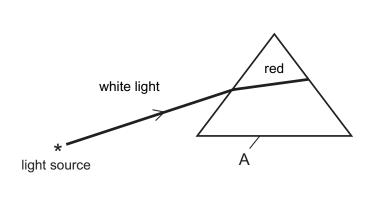
3 The diagram shows a ray of light passing from air into water.

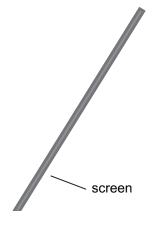


- (a) (i) Label the angle of incidence with the letter i.
 - (ii) Label the angle of refraction with the letter r. [1]
 - (iii) What is the dotted line called?

_____[1]

(b) In another example of refraction, a ray of light passes from **glass** into **air**.




In the boxes label the glass and the air.

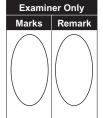
[1]

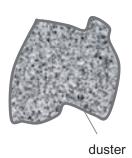
[1]

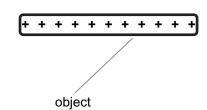
Look at the diagram below. It shows apparatus which is used to split white light into its different colours.

(c) (i) What is the name of component A?

Component A is ______ [1]


- (ii) On the diagram, complete the path of the red ray to the screen. [1]
- (iii) Draw the path of the violet ray through component A to the screen. [2]
- (iv) Explain why white light is split by component A.


[2]


(v) What is the splitting of white light called?

_____[1]

4 Julie charges an object by rubbing it with a duster. The object becomes positively charged.

(a) (i) Choose words from the box to complete the sentence below.

duster protons atoms electrons object

The object becomes positively charged because

have moved from the	
_	[2]

(ii) What charge is left on the duster?

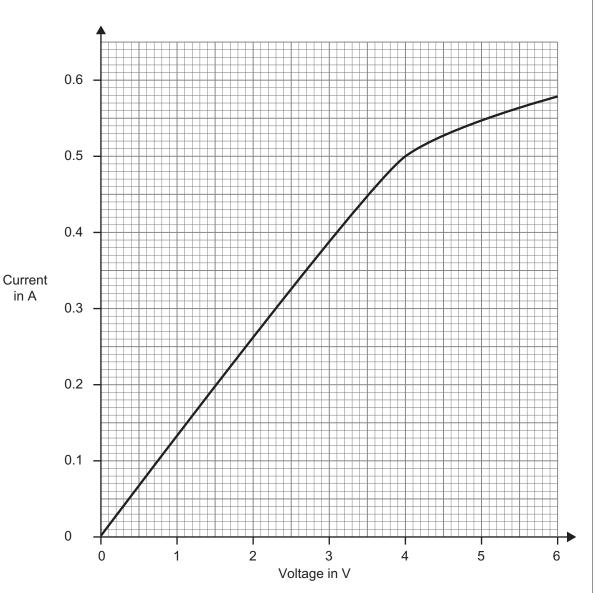
(iii) Write the name of a material the object could be made of.

[1	1]	
-	-	•

Julie wants to investigate how the current through a filament lamp depends on the voltage across the lamp.

Examiner Only

Marks Remark


(b) (i) In the space below draw the circuit diagram of the apparatus she would use.

[5]

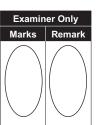
Julie uses her results to plot a graph of current against voltage. The graph is shown below.

Examiner Only

Marks Remark

(ii) Use the graph to find the voltage across the lamp when the current is 0.5 A.

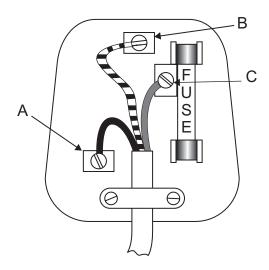
(iii) Use your answer to part (ii) to find the resistance of the lamp when a current of 0.5 A flows.


Remember to write the unit in your answer.

Show your working out.

BLANK PAGE

(Questions continue overleaf)


5 (a) A boy uses an electric iron for 2 hours. The power rating of the iron is 3.0 kW.

(i) How much electrical energy, in kWh, does the iron use in 2 hours?

(ii) One unit of electricity costs 13 p. How much does it cost to use the iron for 2 hours?

(b) The diagram shows a three-pin plug.

(i) Which pin A, B or C is the earth pin?

(ii) What is the colour of the live wire?

		[1
		- 11

(iii) What is the colour of the neutral wire?

 [1]

(c) Look at the picture below. The electric kettle has a metal casing.

Examiner Only				
Marks Remark				

Source: CCEA - Copyright: John Boyd

The wiring inside the kettle is faulty. The live wire is touching the metal casing.

	/ = N		£ 11	II la a .a .a a .a		41 1441-	1 14 - I-	!
•	1	Fyniain	THIIIV What Wi	II nannen	When	the kettle	IS SWITCH	12a An
١			fully what wi	ιι παρροπ	VVIICII	ti io nottio	13 3 WILL	ica oii.

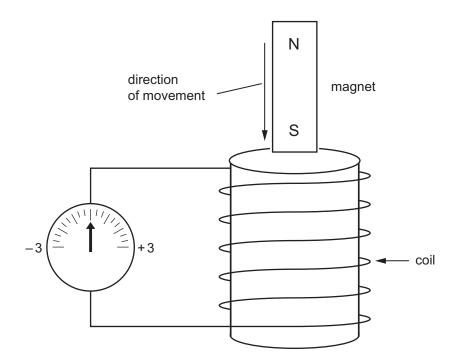
_____[3]

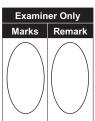
(ii) A hairdryer does not have an earth connection. Why is a hairdryer still safe to use?

______[1]

- (d) Another electric kettle has a power rating of 2800 W.
 - (i) What current flows through this kettle when it is plugged into the 250 V mains?

Show your working out.


Current = _____ A [3]


The following fuses are available: 1A, 3A, 5A and 13A.

(ii) Which fuse should be used for this kettle?

Fuse _____ A [1]

A bar magnet is moved in the direction shown, relative to a coil. The ends of the coil are connected to a centre-zero ammeter.

- (a) When a pupil moves the magnet into the coil the needle on the ammeter moves to +2 and then returns to zero.
 - (i) When the pupil removes the magnet from the coil, what happens to the ammeter?

_____[1]

(ii) If the magnet is at rest inside the coil, what happens to the ammeter?

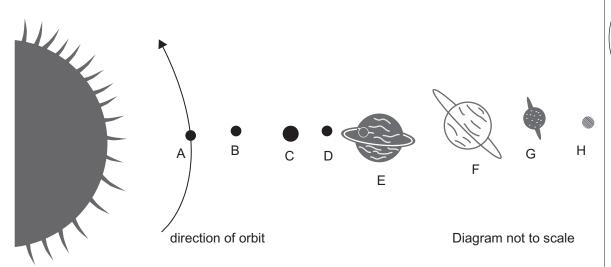
______[1]

(b) A transformer uses an alternating current. What is an alternating current?

[2]

(c) Transformers are used in the generation and transmission of electricity.

Examiner Only		
Marks	Remark	


Generator	>	Transformer A		Grid		Transformer B		Households
-----------	-------------	------------------	--	------	---------	------------------	---------	------------

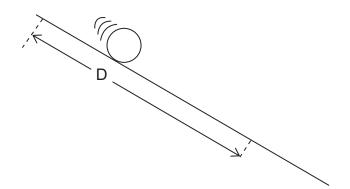
- (i) What does transformer A do to the voltage from the generator?

 [1]
- (ii) Describe fully the advantage of using transformer A.
- (iii) Describe fully the use of transformer B.

 [2]

7 The following diagram shows the planets in our Solar System.

Examin	Examiner Only larks Remark		
Marks	Remark		


(a) (i) Name planets C and D.

- Planet C _____ [1]
- Planet D _____ [1]
- (ii) Use a curved arrow to show the direction of orbit of planet E. [1]
- (iii) Write the name of one of the gas planets.

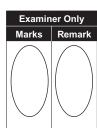
_____[1]

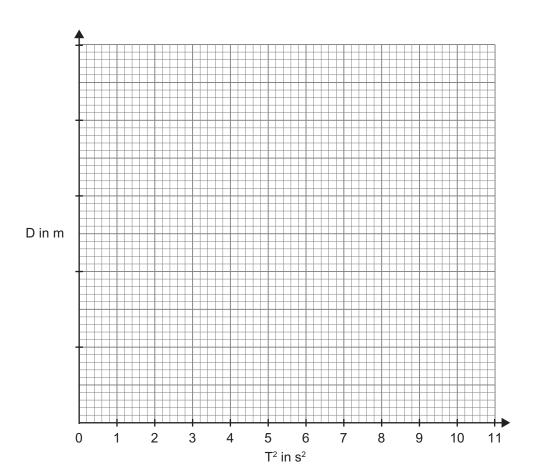
(b)	Scientists believe that the Solar System was formed from a cloud of gas and dust.	Examin Marks	ner Only Remark
	Describe the different stages in the formation of the Solar System.		
	In this question you will be assessed on your written communication skills including the use of specialist scientific terms.	ages in the formation of the Solar System. Il be assessed on your written ncluding the use of specialist scientific [6] It is the Earth. If force which keeps the satellite in orbit. [1] It is of artificial satellites.	
		[6]	
(c)	An artificial satellite orbits the Earth.		
	(i) Name the attractive force which keeps the satellite in orbit.	[4]	
		- [']	
	(ii) Write down two uses of artificial satellites.		
	1		
	2.	_ [4]	

8 Look at the diagram below. A pupil timed a ball moving down a slope.

The pupil measured the time taken for the ball to travel a distance D on three occasions. The pupil recorded the average time T. This was then repeated for different distances.

Distance D in m	0.0	0.5	1.0	1.5	2.0	2.5
Average time T in s	0.0	1.4	2.0	2.5	2.8	3.2
T^2 in s^2	0.0			6.3		


Distance D is related to time T by the equation


$$D = kT^2$$

where k is a constant.

- (i) Complete the table by entering the missing values of T² to 1 decimal place. [2]
- (ii) Choose a suitable scale and plot a graph of D on the vertical axis against T² on the horizontal axis. [3]
- (iii) Draw a straight line of best fit. [1]

18

Examiner Only

Marks Remark

(iv) Use your graph to determine the constant k.

In your answer remember to include the units for k.

Show your working out.

THIS IS THE END OF THE QUESTION PAPER

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.