

Centre Number			
71			
Can	didate Number		

General Certificate of Secondary Education 2012

Science: Double Award (Non-Modular)

Paper 2 Higher Tier

[G8405]

TUESDAY 12 JUNE, MORNING

TIME

1 hour 45 minutes.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all twelve** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 120.

Quality of written communication will be assessed in Question **9(b)**. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question.

A Data Leaflet which includes a Periodic Table of the Elements is provided.

For Examiner's use only			
Question Number	Marks		
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

Total	
Marks	

1 Some students compared the reactivity of four metals. They looked to see if each metal reacted with the nitrate solutions of each of the other three metals. Their results are given in the table below.

Examiner Only			
Marks	Remark		

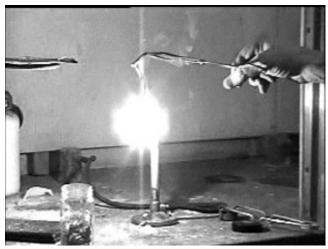
nitrate solution metal	lead nitrate	copper(II) nitrate	silver nitrate	zinc nitrate
lead		reaction	reaction	no reaction
copper	no reaction		reaction	no reaction
silver	no reaction	no reaction		no reaction
zinc	reaction	reaction	reaction	

(a)	Using the information in the table, arrange the four metals in order of
	reactivity with the most reactive metal first.

1			
1.			

(b) What is the name given to the **type** of exothermic reactions shown in the table above?

2


(c) Zinc will also react with dilute sulphuric acid. Complete the word equation for this reaction.

$$zinc + \frac{sulphuric}{acid} \rightarrow +$$
 [2]

Cal	cium is a reactive Group II metal.	Examin Marks	er Only Remark
(a)	Describe three things you would observe when calcium reacts with water.		
	1		
	2		
	3		
	[3]		
(b)	Name the solution formed when calcium reacts with water.		
	[1]		
(c)	Give one safety precaution which should be taken when carrying out the reaction between calcium and water.		
	[1]		

3 Magnesium ribbon burns in air with a bright white flame as shown below. The product of the reaction is magnesium oxide.

Examiner Only				
Marks	Remark			

© Mr K A Boudreaux, Angelo State University, San Angelo, Texas

(a)	(i)	Describe the appearance of magnesium oxide.	
			_ [2]
	(ii)	Explain why the burning of magnesium in air is described as oxidation .	

(b) Magnesium reacts very slowly with cold water but reacts more quickly with steam. Complete the word equation to show the reaction between magnesium and steam.

4 Some students investigated the thermal decomposition of calcium carbonate. They heated 10 g calcium carbonate and noted the mass of solid remaining at different times. Their results are shown in the table below.

Examiner Only			
Marks	Remark		

Time (min)	0	3	6	9	12	15
Mass of solid (g)	10	8.9	6.7	5.8	5.6	5.6

(a) Why did the students stop heating the calcium carbonate after fifteen minutes?

_____[1]

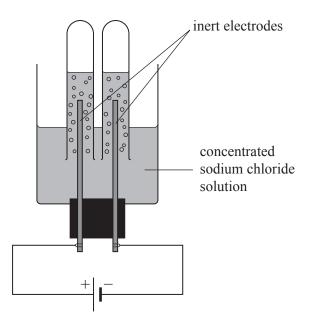
(b) Name the gas given off during the thermal decomposition of calcium carbonate.

_____[1]

- (c) Calcium oxide, obtained from the thermal decomposition of calcium carbonate, is used by farmers to neutralise acidic soil.
 - (i) Complete the word equation for the reaction between hydrochloric acid and calcium oxide.

 $\frac{\text{calcium}}{\text{oxide}} + \frac{\text{hydrochloric}}{\text{acid}} \rightarrow +$ [2]

(ii) Name the solution that is formed when calcium oxide is added to water.


____[1]

5 Electrolysis of concentrated sodium chloride solution is used to manufacture two gases and another useful substance.

Examiner Only

Marks Remark

The diagram below shows the apparatus used in the laboratory for the electrolysis of concentrated sodium chloride solution.

(-)	N. T	1. 1 .		C 11.		.14 1
(a)	Name a	i suitable	materiai	ior in	e inert	electrodes.

_____[1]

(b) Name the gas produced at the cathode.

____[1]

(c) Write a balanced ionic equation to show what happens at the anode.

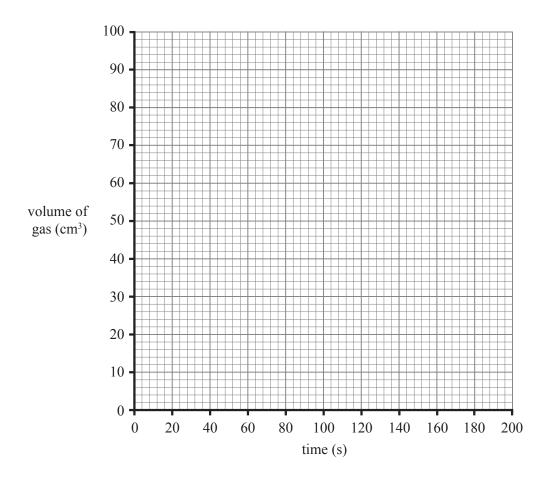
____[3]

(d) What substance is formed in solution during this electrolysis?

____[1]

6

BLANK PAGE


(Questions continue overleaf)

6 Some students investigated the rate of reaction between magnesium ribbon and excess dilute sulphuric acid. The total volume of gas produced was measured at 20 second intervals and recorded in the table below.

Examin	er Only
Marks	Remark

Time (s)	0	20	40	60	80	100	120	140	160	180
Volume (cm ³)	0	30	48	64	74	82	88	90	90	90

(a) On the grid below, plot the results given in the table. Draw a curve of best fit. [3]

- **(b)** Use your graph to help you answer the questions which follow.
 - (i) What volume of gas had been collected at 50 seconds?

_____[1]

(ii) At what time did the reaction stop?

_____[1]

(c)	Using your answer	from (b)(ii) ,	work out the	average rat	te of reaction	in
	cm^3/s					

Examin	er Only
Marks	Remark

7 Problems involving a fixed mass of gas can be solved using the relationship

$$\frac{PV}{T}$$
 = constant

A fixed mass of gas of volume 750 cm³ had its pressure changed from 2000 Pa to 4000 Pa and its temperature increased from 300 K to 450 K.

Calculate the new volume of gas.

Show your working out.

Answer _____ cm³ [3]

8 When sodium hydrogencarbonate is heated it decomposes to form sodium carbonate, water and carbon dioxide as shown in the equation below.

Examin	er Only
Marks	Remark

$$2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$$

(relative atomic masses: Na = 23, C = 12, O = 16, H = 1)

(a) Calculate the relative formula mass of NaHCO₃.

(b) Calculate the relative formula mass of Na_2CO_3 .

(c) Using your answer to part (a) calculate the number of moles in 8.4 g of NaHCO₃.

(d) How many moles of Na_2CO_3 can be produced from 8.4 g of $NaHCO_3$?

(e) Calculate the mass of Na_2CO_3 produced from 8.4 g of $NaHCO_3$.

Answer _____ g [1]

9 (a) Complete the table below about the properties of chlorine, nitrogen and helium.

Examiner Only			
Marks	Remark		

Gas	Lighter or heavier than air	Reactive or unreactive	Colour	Poisonous
chlorine	heavier			yes
nitrogen	lighter	unreactive		
helium			colourless	no

[3]

This part of the question is about the reaction between sulphur and iron.

- **(b)** When a mixture of sulphur and iron is heated a chemical reaction takes place. Describe what you would observe and state what happens in this reaction. Your answer should include:
 - a clear description of what a mixture of iron and sulphur looks like
 - a safety precaution that should be taken when heating iron and sulphur
 - a clear description of what you would observe when the iron and sulphur are heated

• the name and the chemical formula of the product formed				

		_

		Γ7
		/

Quality of written communication

[1]

(c) This part of the question is about carbon, carbon monoxide and carbon dioxide.

Examiner Only Marks Remark

It is important to have coal or gas burning stoves regularly serviced. Incomplete combustion of coal or gas means that carbon monoxide is formed as well as carbon dioxide.

© Euroheat (HBS) Ltd

(i)	Explain why carbon monoxide is so dangerous.
	[2]
(ii)	Explain why it is important to have coal or gas burning stoves regularly serviced.
	[1]
(iii)	Give one harmful environmental effect caused by carbon dioxide.
	[1]

(i)	Explain why this reac	tion must be carried out in a fur	me cupboard.
			[1]
(ii)	What colour change is solution of potassium	s seen when chlorine is bubbled iodide?	I through a
	from	to	[2]

[1]

(a)		ndeleev was responsible for much of the early development of the iodic Table.		
	(i)	Give three features of the Periodic Table developed by Mendeleev.		
		1		
		2		
		3		
		[3]		
	(ii)	Describe three ways in which the modern Periodic Table, as shown in your Data Leaflet, is different from the one Mendeleev developed. 1		
		2		
		3		
		[3]		
	Con	3		

Examiner Only

Marks Remark

Complete the table below, which gives some information about elements, their Groups, Periods and electronic structures. You may find your Data Leaflet useful.					
Element	Group	Period	Electronic structure		
potassium		4			
magnesium	II				
		3	2, 8, 6		
			[6]		
		14			

(c)	(i)	Why do the elements in Group I have similar chemical properties	Examiner Only Marks Remark
	(ii)	How does the reactivity of the elements vary as Group II is descended?	.[1]
	(iii)	Which of the Group VII elements, fluorine, chlorine, bromine or iodine is least reactive?	r
	(iv)	Describe how the reactivity of the elements in Period 3 varies across the period from sodium to argon.	
			.[3]
(d)		gnesium sulphate is an ionic compound, which can be made by eting a base with an acid.	
	(i)	Name a suitable base which may be used to prepare magnesium sulphate.	
			[1]
	(ii)	Name the acid needed to prepare magnesium sulphate.	
			[1]

Wa	ter and ammonia are both covalent molecules.	Examiner Or Marks Ren
(i)	What does the term covalent mean?	
	[1]	
(ii)	What does the term molecule mean?	
	[2]	
(iii)	Using outer shell electrons only, draw a diagram to show how the electrons are arranged in an ammonia molecule, NH ₃ .	
	[2]	
(iv)	How many covalent bonds are there in a water molecule?	
	[1]	
(v)	Explain why substances with a simple covalent structure have low melting points.	
	[2]	

	oper is a very good conductor of electricity and it is ductile. It is d for electrical wiring.	Examiner Only Marks Rema
(i)	Draw a labelled diagram to show the bonding in a metal such as copper.	
	[4]	
(ii)	What does the term ductile mean?	
	[1]	
(iii)	Use your understanding of metallic bonding to explain why copper is ductile.	
	[2]	
(iv)	Give one other physical property of copper.	
	[1]	

	two ctur	types of plastics, thermosoftening and thermosetting, have es.	different	Examiner Only Marks Remark
(c)	(i)	oftening		
			[1]	
	(ii)	Melamine is a thermosetting plastic. Draw a simple diagram show the structure of a thermosetting plastic.	m to	
	(iii)	Which one of the plastics below is also a thermosetting pl	[2]	
	` ′	Circle the correct answer.		
		polystyrene Bakelite PVC		

BLANK PAGE

(Questions continue overleaf)

	e hydrocarbons methane, ethane, propane and butane are embers of a homologous series.	four Examiner Onl
(i)	What elements are hydrocarbons made from?	
		[1]
(ii)	Which homologous series do these hydrocarbons belon	
		[1]
(iii) Give two features of a homologous series.	
	1	
	2	[2]
	and propene are members of another homologous series. I to manufacture ethanol.	Ethene can
(b) (i)	What other reactant is needed to make ethanol from eth	ene?
		[1]
(ii)	Name another method for manufacturing ethanol.	
		[1]
(iii) Give the molecular and structural formula for ethanol.	
	Molecular Structural Formula	
		[2]
(iv	Explain why ethanol is not a hydrocarbon.	
		[1]

	(v)	Write a balanced sy ethanol in a plentif	_	the complete combustion	Of Examiner Only Marks Remark
					_[3]
(c)	Eth	anol can be oxidised	d to form ethanoic	acid.	
	(i)	What pH would yo	u expect ethanoic	acid to have?	
					. [1]
	(ii)	you would observe	if solid copper(II)	ypical acid. Describe what oxide is added to a sampled. Name the salt formed in	e of
					_[2]
		Name of salt:			_[1]
(d)	(i)	Complete the folloethanoic acid and e		n for the reaction between	1
		ethanoic acid + eth	nanol → ethyl etha	noate +	[1]
	(ii)	Choose three word ethanoate.	ls from those giver	below to describe ethyl	
		Put a circle around	each of the three v	vords you have selected.	
		colourless	odourless	liquid	
		solid	green	white	
		orange	gas	sweet-smelling	
					[3]
	THI	S IS THE END	OF THE QU	ESTION PAPER	

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.