

Centre Number			
71			

Candidate Number

General Certificate of Secondary Education 2011–2012

Double Award Science: Chemistry

Unit C1
Higher Tier
[GSD22]

WEDNESDAY 9 NOVEMBER 2011 9.15 am – 10.15 am

TIME

1 hour.

INSTRUCTIONS TO CANDIDATES

Write your Centre Number and Candidate Number in the spaces provided at the top of this page.

Write your answers in the spaces provided in this question paper. Answer **all nine** questions.

INFORMATION FOR CANDIDATES

The total mark for this paper is 70.

Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in **questions 5(b)** and **9(a)**.

A Data Leaflet which includes a Periodic Table of the elements is provided.

For Examiner's use only				
Question Number	Marks			
1				
2				
3				
4				
5				
6				
7				
8				
9				

=
$\overline{}$
=
_

1 The table below shows part of **Mendeleev's** Periodic Table.

Cu Zn

Examiner Only		
Marks	Remark	

I	_								
Н	II	III	IV	V	VI	VII			
Li	Ве	В	С	N	0	F			
Na	Mg	Al	Si	Р	S	CI			
K	Ca		Ti	V	Cr	Mn	Fe	Co	Ni
				İ					

(a)	in what order did Mendeleev Set out the elements?	
		[1]

As Se Br

(b) (i)	Name the Group of elements known today which is not in

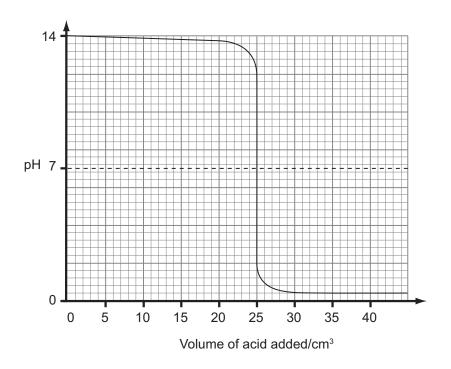
 Mendeleev's table.		
		Г1 ¹

(ii)	Suggest a reason why this Group was not in Mendeleev's table.	
	[1]

(c)	Using the Data Leaflet and your knowledge, name one element that
	Mendeleev placed in the wrong position.

r.a	4.7
[1]	

_____[1]


(d)	In what ord	er are the	elements	set out in	the modern	Periodic	Table?

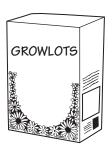
(e)	Name another scientist who made a contribution to the developm	ent
	of the Periodic Table.	

	[1]

2 The pH changes during the reaction between sodium hydroxide and hydrochloric acid were measured using a pH meter. The following graph was produced.

(a) What was the pH value of the liquid in the flask at the start of the experiment?

_____[1]


(b) What volume of acid was needed to cause a sudden drop in the pH value?

______[1]

(c) Explain why litmus paper could **not** be used instead of a pH meter for this experiment.

______[1]

(d) Complete the symbol equation for this reaction:

- (a) (i) Suggest why Growlots fertiliser is blue in colour.

 [1]

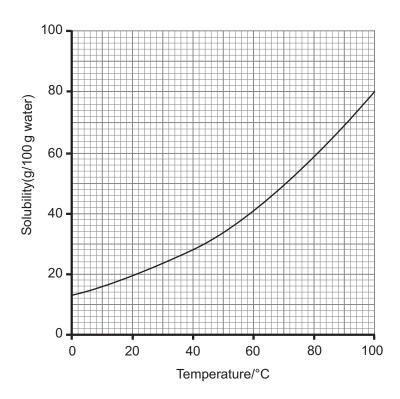
 (ii) Explain the meaning of the term hydrated.

 [1]
- (b) The fertiliser is made up of two salts, copper(II) sulfate and iron(III) sulfate. Each salt can be made by reacting an acid with a base.
 - (i) Name the acid used to make the two salts in the fertiliser.

 [1]
 - (ii) What is the name given to this **type** of chemical reaction?

 [1]
- (c) You may find your Data Leaflet helpful to answer this question.
 - (i) What is the formula of copper(II) sulfate?
 ______[1]
 - (ii) Circle the correct formula for iron(III) sulfate given in the list below.
 - $\operatorname{Fe_3(SO_4)_2} \qquad \operatorname{Fe_2(SO_4)_3} \qquad \operatorname{FeSO_4} \qquad \operatorname{Fe_3SO_4} \qquad [1]$

BLANK PAGE


(Questions continue overleaf)

(a) Explain fully what is meant by the term solubility.

Examin	er Only
Marks	Remark
	Examin Marks

_____[4]

(b) The solubility curve for copper(II) sulfate is drawn below.

Use the solubility curve to answer the following questions.

(i) How does the solubility of copper(II) sulfate change as the temperature of the water increases?

[1]

(ii) What is the solubility of copper(II) sulfate at 76 °C?

_____[1]

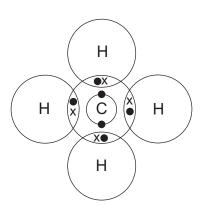
6

(iii) State whether the following copper(II) sulfate solutions are saturated or unsaturated.

	Solution		
Mass of CuSO ₄ (g)	Mass of water(g)	Temperature °C	Saturated/unsaturated
45	100	60	
15	50	20	
125	500	40	

[3]

(iv) What mass of copper sulfate will crystallise from a saturated solution containing 100 g of water when the solution is cooled from 56 °C to 22 °C? You should show your working out clearly.


_____ g/100 g H₂O [4]

Sodiu	m reacts with chlorine to form the compound sodium chloride.	Examiner Only Marks Remark
	complete the diagrams below to show the arrangement of all of the lectrons in a sodium atom and a chlorine atom.	marks Remark
(i)) Sodium atom	
(ii	i) Chlorine atom	
In Par	rt (b) you will be assessed on your written communication skills	
	ding the use of specialist science terms.	
	xplain, using electronic structures, how sodium and chlorine bond to orm the compound sodium chloride.	-
		-
		-
_	[6]	-

l		
2.	[2]	

6 Methane, water and nitrogen occur as molecules.

The diagram below shows the electrons in the atoms of carbon and hydrogen in a molecule of methane.

(a) (i) Draw a dot and cross diagram to show the **outer electrons** of the atoms in a molecule of water.

[3]

Examiner Only

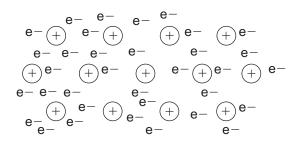
Marks Remark

(ii) Label the lone pairs of electrons in your diagram.

10

[1]

(b)	Nitr	ogen is made up of diatomic molecules.	ļ	Examine Marks	er Only Remark
	(i)	What is meant by the term diatomic ?			
			[1]		
	(ii)	Draw a dot and cross diagram to show how the outer electrons are arranged in a molecule of nitrogen.			
			[3]		


7 Substances may be classified in terms of their physical properties. Use the table below to answer the following questions.

Examiner Only	
Marks	Remark

Substance	Melting point °C	Boiling point °C	Electrical conductivity		
			As solid	As liquid	
А	3550	4827	poor	poor	
В	1540	2750	good	good	
С	776	1500	poor	good	
D	-95	69	poor	poor	
E	327	1760	good	good	

(a)	Which substance, A, B, C, D or E, is an ionic compound? Explain your answer.
	Substance
	Explanation
	[2]
(b)	Which substance, A, B, C, D or E, has a molecular covalent structure?
	[1]
(c)	Which substance, A, B, C, D or E, is a metal with a low melting point?
	Substance [1]
(d)	Which substance, A, B, C, D or E, is an allotrope of carbon? Name the allotrope.
	Substance
	Name [2]

8	Sodium is a soft metal that conducts electricity and has a low melting
	point. A simple model of its structure is shown below.

Use your understanding of metallic bonding to answer the following questions.

(a) Explain why sodium is able to conduct electricity.

_____ [2]

(b) The melting point of sodium is low compared to many other metals. What does this tell you about the metallic bonds in sodium?


_____[1]

(c) Sodium, like all metals, is ductile. Explain why sodium is ductile.

_____[1]

9 The diagram shows the laboratory apparatus used in the electrolysis of lithium chloride.

In Part (a) you will be assessed on your written communication skills including the use of specialist science terms.

- (a) Describe fully how to carry out this electrolysis and state what you would observe during the reaction. Your answer should include:
 - Safety measures to be taken.
 - Reason for the use of heat.
 - The colours and states of the products formed at each named electrode.

	161

(b)	Write a balanced ionic equation for the reaction occurring at the anode.	Examine Marks	er Only Remark
(c)	Aluminium is extracted from its ore by electrolysis. This is a very costly		
()	process.		
	Give two ways of helping to keep the costs to a minimum in this industrial process.		
	[2]		
(d)	Suggest what factors need to be considered when deciding on the site for an aluminium extraction plant.		
	[2]		
	THIS IS THE END OF THE QUESTION PAPER		

Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.