| Ce | ntre | Number | | | | |----|------|--------|--|--|--| | 71 | | | | | | **General Certificate of Secondary Education** 2011-2012 ## **Double Award Science: Physics** Unit P1 **Foundation Tier** [GSD31] **MONDAY 14 NOVEMBER 2011** $1.30 \, \text{pm} - 2.30 \, \text{pm}$ TIME 1 hour. ## INSTRUCTIONS TO CANDIDATES Write your Centre Number and Candidate Number in the spaces provided at the top of this page. Write your answers in the spaces provided in this question paper. Answer all ten questions. ## INFORMATION FOR CANDIDATES The total mark for this paper is 70. Figures in brackets printed down the right-hand side of pages indicate the marks awarded to each question or part question. Quality of written communication will be assessed in questions requiring extended answers. | For Examiner's use only | | | |-------------------------|-------|--| | Question
Number | Marks | | | 1 | | | | 2 | | | | 3 | | | | 4 | | | | 5 | | | | 6 | | | | 7 | | | | 8 | | | | 9 | | | | 10 | | | | Total | | |-------|--| | Marks | | 1 Maureen uses her mobile phone. (a) (i) Where is the energy stored in the mobile phone? Answer _____ [1] (ii) Name **two** useful forms of energy the mobile phone produces when it is in use. _____ energy and _____ energy. [2] A trolley is held at rest and then allowed to run down a runway. It hits a block of wood at the bottom and stops. **(b)** Complete the energy transfer diagram below to show the energy changes that take place when the trolley is released. **2** Joan wants to find the average speed of her friend Siobhan as she cycles past. | Examiner Only | | | | | |---------------|--------|--|--|--| | Marks | Remark | | | | | | | | | | | [] | | |----------|---| | | | | <u> </u> | 1 | | | | | (i) | What two measurements would Joan have to make to allow her to | |-----|--| | | calculate Siobhan's average speed? In each case give the name of | | | the measuring instrument Joan would use. | 1. _____ measured with _____ 2. _____ measured with _____ [4] | (ii) | In the box below, give the equation, in words, that Joan would use to | |------|---| | | carry out the calculation to find the average speed. | [1] 3 An electric oven produces 2000 J of heat energy every second. However 400 J of heat energy are lost every second. | Examin | Examiner Only | | | | | | |--------|---------------|--|--|--|--|--| | Marks | Remark | | | | | | | | | | | | | | (a) (i) Calculate the efficiency of the oven. You are advised to show your working out. (ii) What unit, if any, is efficiency measured in? Choose from: joule, newton, no unit, watt. Answer _____ [1] **(b)** In what practical way could the manufacturer make the oven more efficient? _____[1] 4 Three toy cars are shown and each one has the same mass. (a) (i) Which car, A, B or C, will have the greatest acceleration? (ii) Give a reason for your answer. (b) Car C has a mass of 0.5 kg. Use the equation: $$acceleration = \frac{resultant\ force}{mass}$$ to find the acceleration of car C. Remember to include the correct unit. You are advised to show your working out. | n an object moves in a circle then a force, called a centripetal force | |--| | t act towards the centre of the circle. Give the name of the force | | h provides the centripetal force in the two examples below. | | t | (a) (i) a car moving round a circular track (ii) a ball moves in a circle at the end of a string A ball of mass 0.5 kg moves in a circle at the end of a string, as shown below. **(b)** At a particular instant its velocity is 3 m/s. Calculate the ball's momentum at this instant. You are advised to show your working out. 6 In 1904 a scientist called J.J. Thomson put forward a model about the structure of the atom as shown in the diagram below. | (a | a) | (i) | What is | the name | of this | model d | of the | atom? | |----|----|--------------|----------|----------|---------|----------|---------|-------| | 10 | 41 | \'' <i>'</i> | VVIIGLIO | uio namo | OI IIII | THOUGH C | ,, ,,,, | atom | | Į. | 1 | l | | |----|---|---|--| | | | | | Later this model was replaced by a better model. This model is named after two of the scientists who proposed it. (ii) Give the name of one of the scientists. | [| 1 | 1 | ı | |---|---|---|---| | | | | | **(b)** Information about the model in **(ii)** above can be given in a table. Complete the table below. | Particle | Location | Charge | |----------|----------|----------| | proton | | positive | | | nucleus | neutral | | electron | in orbit | | [3] | Mass a | and weight are two different quantities with different units. | Examir
Marks | ner Only
Remar | |---------|---|-----------------|-------------------| | (a) WI | nat is the weight of 400 g? | Marks | Kellial | | Yo | u are advised to show your working out. | | | | | $Weight = \underline{\hspace{1cm}} N \ [3]$
Ints to find the density of steel. He has 100 steel nails and he finds eir volume is 20cm^3 . | | | | (b) (i) | | | | | 8 | Nuclear fission reactors make use of a fuel called uranium. Uranium may | |---|---| | | be written in the following way: | | Examiner Only | | | |---------------|--------|--| | Marks | Remark | | | | | | | 235 | ı | | |-----|---|---| | 92 | L | J | (a) (i) What is the number 92 called? | I | 1 | |---|---| | | | (ii) What information about the uranium nucleus is given by the number 92? | - 4 | |-----| | 11 | | | (iii) What is the number 235 called? | [1 | 1 | |----|---| | | _ | (iv) What information about the uranium nucleus is given by the number 235? | [1] | | | |-----|----|----| | 11 | 41 | 14 | | | 11 | 11 | **(b)** Some scientists believe that we should make greater use of nuclear fission. Describe what happens in the fission of $^{235}_{92}$ U in a nuclear reactor. In this question you will be assessed on your written communication skills including the use of specialist terms. |
 |
 | |------|------|
 |
 |
 |
 | 9 Certain substances such as uranium are said to be radioactive. | Examiner Only | | | |---------------|--------|--| | Marks | Remark | | | | | | (a) (i) What does the word "radioactive" mean? | I.O. | | |------|--| | IZ | | In the study of radioactivity we learn of three different types of radiation. (ii) Identify these radiations from the information given below. This type of radiation is an electromagnetic wave. This type of radiation is a particle made up from four smaller particles. This type of radiation is a single particle. We are all exposed to a certain minimum amount of radiation called "background radiation". **(b)** Give two sources of background radiation. **1.** 2. [2] | | | who work in nuclear power stations must take certain precautio nise the amount of radiation they receive. | | Examin
Marks | Remark | |-----|------|---|-----|-----------------|--------| | (c) | (i) | Why must they keep the radiation they receive to a minimum? | | | | | | | | [1] | | | | | (ii) | Give two methods that they can use to keep the radiation to a minimum. | | | | | | | 1 | | | | | | | 2 | [2] | 10 When an object falls through the air a drag force, F, acts on the object. The size of the drag force, F, depends on the speed, v, of the falling object. A scientist suggests a theory that the drag force is proportional to the square of the velocity. Another way of writing this relationship is: $$F = kv^2$$ **Equation 10.1** where k is a constant. He obtains a set of results and these are shown. | F in N | 0.5 | 2.0 | 4.5 | 8.0 | 12.5 | |--|-----|-----|-----|-----|------| | v in m/s | 1 | 2 | 3 | 4 | 5 | | v ² in m ² /s ² | | | 9 | | | - (i) Complete the table by entering the values of v². One has been done for you. [2] - (ii) Choose a suitable scale for the horizontal axis and plot a graph of F against v^2 . [3] Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright holders may have been unsuccessful and CCEA will be happy to rectify any omissions of acknowledgement in future if notified.