

General Certificate of Secondary Education 2012–2013

Double Award Science: Physics

Unit P1

Foundation Tier

[GSD31]

WEDNESDAY 29 FEBRUARY 2012 9.30 am-10.30 am

MARK SCHEME

1	(i)	Kinetic [1], Electric(al) [1]	[2]	AVAILABLE MARKS
	(ii)	Heat [1], Sound [1]	[2]	
	(iii)	Visual pollution/unreliable/noise pollution Dangers to birds/animals or destroys habitats [1]	[1]	
	(iv)	No pollution/saves fossil fuels/energy is free/renewable any 2 for 2 marks	[2]	7
2	(i)	5 [1]	[1]	
	(ii)	Efficiency = $\frac{\text{(Useful) Energy Output}}{\text{Input Energy}}$ [1] = $\frac{25}{100}$ [1]		
		= 0.25 or 25% [1]	[3]	4
3	(a)	Weight/(Force of) gravity [1]	[1]	
	(b)	Balanced forces/No resultant force [1]	[1]	
	(c)	(i) 8 (N) [1]	[1]	
		(ii) Accelerates/or moves faster [1] to the right [1] Independent marking	[2]	5
4	(a)	(i) Electron, proton, neutron [1] each	[3]	
		(ii) 3 protons [1], 4 neutrons [1]	[2]	
	(b)	(i) Fast moving electrons [1]	[1]	
		(ii) Nucleus [1]	[1]	
		(iii) Alpha [1], Gamma [1]	[2]	
		(iv) Alpha [1]	[1]	10

5	(a)	$a = \frac{v - u}{t} \text{ or } v = u + at [1]$	[1]	AVAILABLE MARKS
		$=\frac{15-0}{20}$ [1] if $\frac{0-15}{20}$ then loses subsmark	[1]	
		= 0.75 (m/s2) [1]	[1]	
	(b)	Velocity has direction/vel. is a vector	[4]	
		Speed has no direction/speed is a scalar [1]	[']	
	(c)	Rates of change/same units [1] Both have distance and time.	[1]	5
6	(a)	(i) Mass is amount of material [1]	[1]	
		(ii) Weight is force (due to gravity) [1]	[1]	
	(b)	(i) 24.6 (cm ³) [1]	[1]	
		(ii) 28.6 [1] allow e c f from (i)		
		$4.0 \text{ (cm}^3)$ [1]	[2]	
		(iii) Density = Mass/Volume [1]		
		$= \frac{42}{4}$ [1] allow e.c.f. from (b)(ii)		
		$= 10.5 (g/cm^3) [1]$	[3]	
		(iv) Silver [1] allow e.c.f. from (b)(iii)	[1]	9
7	(a)	(i) At rest [1]	[1]	
		(ii) Bigger or steeper gradient [1]	[1]	
	(b)	Distance = $8(m)$	[1]	
	(c)	Average Speed = Gradient [1] = $\frac{18}{12}$ [1]		
		= 1.5 (m/s) [1]	[3]	6

8	(i) KE	$=\frac{1}{2}mv^2$ [1] Full formula required	[1]	AVAILABLE MARKS
	(ii)	$= \frac{1}{2} \times 7500 \times 20^{2} \text{ [1]} \\= 1500000 \text{ (J) [1]}$	[2]	
	(iii) Work	= 1500000 (J) [1] allow e.c.f. from (ii)	[1]	
	(iv) Powe	er = Work done/time [1] = 1500000/20 [1] = 75000 (W) [1] y e.c.f. from (ii) or (iii)	[3]	
	(v) 75(k)	V) allow e.c.f. from (iv) [1]	[1]	8
9	 Two (lig Join tog To form Energy Decrea High te 	ght) nuclei [1] gether [1] or combine or fuse n a different nucleus [1] or a heavier nucleus or new is released [1] se in mass [1] mperature [1]	v nucleus	
R	esponse		Mark	
C th pr sh pr	andidates r roughout to ocess of fu nown in the unctuation a a high star	nust use appropriate specialist scientific terms o describe fully and in a logical sequence the sion in a nuclear reactor using 5 or 6 the points indicative content above. They use good spelling, and grammar throughout and the form and style are indard.	[5-6]	
C pa nu sa ar	andidates u artially desc uclear fusio atisfactory s ad style are	use some appropriate specialist scientific terms to cribe, in a logical sequence, 3 or 4 points relating to n shown in the indicative content above. They use spelling, punctuation and grammar and the form of satisfactory standard.	[3-4]	
C 1 cc st	andidates u or 2 of the ontent abov yle are of a	use limited specialist scientific terms to describe points relating to fusion shown in the indicative e. Their spelling, punctuation, grammar, form and limited standard.	[1-2]	
R	esponse no	ot worthy of credit.	0	6

10	(a)	1.2, 2.6 2 correct = [2]. 1 correct = [1]	[2]	AVAILABLE MARKS
	(b)	Scale > half of axis [1] if non linear scale	[4]	
		within \pm 1 square	[4]	
	(c)	(i) Straight line [1], including origin [1] dependent marking \pm 1 square	[2]	
		(ii) Yes [1] Straight line thro' origin [1] allow e.c.f. from (c) (i)	[2]	10
			Total	70